Inhibition of Met results in concomitant inhibition of Akt and STAT3 signaling pathways, while abrogation of negative feedback permits Erk reactivation
Ontology highlight
ABSTRACT: Amplification and activation of the Met receptor tyrosine kinase occurs up to 23% of gastric cancers, suggesting that Met is a therapeutic target in these cancers. However, the steady-state signaling events that occur during chronic Met activation, and mechanisms for resistance to Met small-molecule inhibitors, are poorly understood. Here we show that multiple gastric cancer cell lines harboring MET amplifications are dependent on Met signaling for proliferation and anchorage-independent growth. In these cells, short-term inhibition of Met leads to coordinated changes in gene expression; these include a rapid loss in expression of immediate-early genes, followed by decreased expression of genes involved in cell cycle and proliferation. Activation of Ras-Erk, PI3K-Akt and STAT3 pathways is attenuated by acute Met inhibition. STAT3 inhibition alone, but not individual inhibition of Mek or Akt, is sufficient to abrogate Met-dependent growth of these cells. However, following chronic Met inhibition, reactivation of Mek-dependent Erk phosphorylation occurs even in the presence of Met inhibitor corresponding with a downregulation of Erk negative regulators DUSP4/6. This provides a mechanism for the emergence of drug resistance. Our findings provide insights into innate resistance to a small-molecule Met inhibitor and highlight rational combination therapies that could be evaluated in clinical trials.
ORGANISM(S): Homo sapiens
PROVIDER: GSE54532 | GEO | 2014/05/19
SECONDARY ACCESSION(S): PRJNA237003
REPOSITORIES: GEO
ACCESS DATA