A Gain-of-Function Genomic Screen Identifies the Orphan Nuclear Receptor TLX as an Enhancer of STAT1-mediated Transcription and Immunity to Toxoplasma gondii: TLX overexpression
Ontology highlight
ABSTRACT: The protozoan parasite Toxoplasma gondii is a highly successful intracellular pathogen, owing in part to its ability to subvert the host immune system. In particular, parasite infection suppresses STAT1 signaling in a variety of cell types, including IFN-γ activated macrophages, via a block within the nucleus. A high-throughput screen to identify genes able to overcome parasite-mediated suppression of STAT1 activity identified 9 transcription factors as enhancers of STAT1 signaling in T. gondii infected cells, including the orphan nuclear hormone receptor TLX. Expression profiling revealed that TLX is a transcriptional regulator that drives the steady-state expression of STAT1-independent genes involved brain function and development, while enhancing the output of a subset of IFN-γ-dependent target genes. Infection of TLX deficient mice with Toxoplasma results in impaired production of interleukin-12 by dendritic cells and increased parasite burden in the brain during chronic infection. These results demonstrate a previously unrecognized function for this orphan nuclear hormone receptor in regulating STAT1 signaling and host defense, and reveal that STAT1 activity can be modulated in a context-specific manner by such ‘modifiers’.
Project description:The protozoan parasite Toxoplasma gondii is a highly successful intracellular pathogen, owing in part to its ability to subvert the host immune system. In particular, parasite infection suppresses STAT1 signaling in a variety of cell types, including IFN-γ activated macrophages, via a block within the nucleus. A high-throughput screen to identify genes able to overcome parasite-mediated suppression of STAT1 activity identified 9 transcription factors as enhancers of STAT1 signaling in T. gondii infected cells, including the orphan nuclear hormone receptor TLX. Expression profiling revealed that TLX is a transcriptional regulator that drives the steady-state expression of STAT1-independent genes involved brain function and development, while enhancing the output of a subset of IFN-γ-dependent target genes. Infection of TLX deficient mice with Toxoplasma results in impaired production of interleukin-12 by dendritic cells and increased parasite burden in the brain during chronic infection. These results demonstrate a previously unrecognized function for this orphan nuclear hormone receptor in regulating STAT1 signaling and host defense, and reveal that STAT1 activity can be modulated in a context-specific manner by such ‘modifiers’.
Project description:We previously showed that the orphan nuclear hormone receptor, TLX (also known as NR2E1), selectively modifies the output of IFN-gamma-driven, STAT1-dependent gene expression. Since IFN-gamma and STAT1 are also known to regulate myeloid cell development and function, we tested whether ectopic expression of TLX or COUPTF2 (a closely related orphan nuclear receptor) might influence hematopoietic differentiation. Indeed, TLX promotes lineage commitment toward myeloid development and suppresses erythropoiesis, phenocopying IFN-gamma treatment. Moreover, TLX expression in our assay is sufficient to activate a proinflammatory transcriptional program with two hallmarks: differential regulation of STAT1-dependent genes, and suppression of an anti-inflammatory program in favor of a fatty acid signature – a process known to be essential for cellular remodeling during macrophage maturation and phagocytosis. These results demonstrate an important role for a new nuclear hormone receptor in STAT1 signaling, and link TLX to myeloid lineage commitment and function.
Project description:Intracellular pathogens including the apicomplexan and opportunistic parasite Toxoplasma gondii profoundly modify their host cells in order to establish infection. We have shown previously that intracellular T. gondii inhibit up-regulation of regulatory and effector functions in murine macrophages (MΦ) stimulated with interferon (IFN)-γ, which is the cytokine crucial for controlling the parasites’ replication. Using genome-wide transcriptome analysis we show herein that infection with T. gondii leads to global unresponsiveness of murine macrophages to IFN-γ. More than 61% and 89% of the transcripts, which were induced or repressed by IFN-γ in non-infected MΦ, respectively, were not altered after stimulation of T. gondii-infected cells with IFN-γ. These genes are involved in a variety of biological processes, which are mostly but not exclusively related to immune responses. Analyses of the underlying mechanisms revealed that IFN-γ-triggered nuclear translocation of STAT1 still occurred in Toxoplasma-infected MΦ. However, STAT1 bound aberrantly to oligonucleotides containing the IFN-γ-responsive gamma-activated site (GAS) consensus sequence. Conversely, IFN-γ did not induce formation of active GAS-STAT1 complexes in nuclear extracts from infected MΦ. Mass spectrometry of protein complexes bound to GAS oligonucleotides showed that T. gondii-infected MΦ are unable to recruit non-muscle actin to IFN-γ-responsive DNA sequences, which appeared to be independent of stimulation with IFN-γ and of STAT1 binding. IFN-γ-induced recruitment of BRG-1 and acetylation of core histones at the IFN-γ-regulated CIITA promoter IV, but not β-actin was diminished by >90% in Toxoplasma-infected MΦ as compared to non-infected control cells. Remarkably, treatment with histone deacetylase inhibitors restored the ability of infected macrophages to express the IFN-γ regulated genes H2-A/E and CIITA. Taken together, these results indicate that Toxoplasma-infected MΦ are unable to respond to IFN-γ due to disturbed chromatin remodelling, but can be rescued using histone deacetylase inhibitors. Comparison of 4 different RNA pools with a 2-Color-Loop Design including 10 microarrays: [1] T. gondii infected and IFN-gamma treated, [2] T. gondii infected and untreated, [3] Non-infected and IFN-gamma treated, and [4] Non-infected and untreated.
Project description:Intracellular pathogens including the apicomplexan and opportunistic parasite Toxoplasma gondii profoundly modify their host cells in order to establish infection. We have shown previously that intracellular T. gondii inhibit up-regulation of regulatory and effector functions in murine macrophages (MΦ) stimulated with interferon (IFN)-γ, which is the cytokine crucial for controlling the parasites’ replication. Using genome-wide transcriptome analysis we show herein that infection with T. gondii leads to global unresponsiveness of murine macrophages to IFN-γ. More than 61% and 89% of the transcripts, which were induced or repressed by IFN-γ in non-infected MΦ, respectively, were not altered after stimulation of T. gondii-infected cells with IFN-γ. These genes are involved in a variety of biological processes, which are mostly but not exclusively related to immune responses. Analyses of the underlying mechanisms revealed that IFN-γ-triggered nuclear translocation of STAT1 still occurred in Toxoplasma-infected MΦ. However, STAT1 bound aberrantly to oligonucleotides containing the IFN-γ-responsive gamma-activated site (GAS) consensus sequence. Conversely, IFN-γ did not induce formation of active GAS-STAT1 complexes in nuclear extracts from infected MΦ. Mass spectrometry of protein complexes bound to GAS oligonucleotides showed that T. gondii-infected MΦ are unable to recruit non-muscle actin to IFN-γ-responsive DNA sequences, which appeared to be independent of stimulation with IFN-γ and of STAT1 binding. IFN-γ-induced recruitment of BRG-1 and acetylation of core histones at the IFN-γ-regulated CIITA promoter IV, but not β-actin was diminished by >90% in Toxoplasma-infected MΦ as compared to non-infected control cells. Remarkably, treatment with histone deacetylase inhibitors restored the ability of infected macrophages to express the IFN-γ regulated genes H2-A/E and CIITA. Taken together, these results indicate that Toxoplasma-infected MΦ are unable to respond to IFN-γ due to disturbed chromatin remodelling, but can be rescued using histone deacetylase inhibitors.
Project description:An early hallmark of Toxoplasma gondii infection is the rapid control of the parasite population by a potent multifaceted innate immune response that engages resident and homing immune cells along with pro- and counter-inflammatory cytokines. In this context, IFN-γ activates a variety of T. gondii-targeting activities in immune and nonimmune cells but can also contribute to host immune pathology. T. gondii has evolved mechanisms to timely counteract the host IFN-γ defenses by interfering with the transcription of IFN-γ-stimulated genes. We now have identified TgIST (T. gondii inhibitor of STAT1 transcriptional activity) as a critical molecular switch that is secreted by intracellular parasites and traffics to the host cell nucleus where it inhibits STAT1-dependent proinflammatory gene expression. We show that TgIST not only sequesters STAT1 on dedicated loci but also promotes shaping of a nonpermissive chromatin through its capacity to recruit the nucleosome remodeling deacetylase (NuRD) transcriptional repressor. We found that during mice acute infection, TgIST-deficient parasites are rapidly eliminated by the homing Gr1+ inflammatory monocytes, thus highlighting the protective role of TgIST against IFN-γ-mediated killing. By uncovering TgIST functions, this study brings novel evidence on how T. gondii has devised a molecular weapon of choice to take control over a ubiquitous immune gene expression mechanism in metazoans, as a way to promote long-term parasitism.
Project description:To study the effect of stress on macrophages due to Toxoplasma, we stimulated murine bone marrow-derived macrophages (BMDMs) with IFN-γ (no-stimulate control) and infected them with the apicomplexan parasite Toxoplasma gondii. scRNA-Seq (10X Chromium genomics ) was performed to understand the changes in the immune cells and study the impact of the parasite.
Project description:Tlx (nr2e1) is an orphan nuclear receptor that is highly expressed in proliferating neural stem cells (NSCs) in the adult mouse forebrain. The goal was to identify Tlx-regulated genes in this specific cell population. Two populations of Tlx-positive neural stem cells were isolated from 2-month-old male mice based on a LacZ marker that was knocked into the Tlx locus. The first population, Tlx(f/Z;CreER), contains a floxed allele of Tlx (f), the LacZ marker (Z), and a CreER fusion transgene. Addition of tamoxifen (4OH-tamoxifen) into this NSC population leads to Cre-mediated deletion of the floxed allele of Tlx. The second NSC population, Tlx(f/Z), does not contain a CreER transgene; thus it does not respond to tamoxifen treatment and was used as a control. Keywords: Nuclear receptor-dependent gene expression
Project description:The closely related protozoan parasites Toxoplasma gondii and Neospora caninum display similar life cycles, subcellular ultrastructure, invasion mechanisms, metabolic pathways, and genome organization, but differ in their host range and disease pathogenesis. Type II (γ) interferon has long been known to be the major mediator of innate and adaptive immunity to Toxoplasma infection, but genome-wide expression profiling of infected host cells indicates that Neospora is a potent activator of the type I (α/β) interferon pathways typically associated with antiviral responses. Infection of macrophages from mice with targeted deletions in various innate sensing genes demonstrates that host responses to Neospora are dependent on the toll-like receptor Tlr3 and the adapter protein Trif. Consistent with this observation, RNA from Neospora elicits type I interferon responses when targeted to the host endo-lysosomal system. While live Toxoplasma fails to induce type I interferon, heat-killed parasites do trigger this response, and co-infection studies reveal that T. gondii actively suppresses the production of type I interferon. These findings reveal that eukaryotic pathogens can be potent inducers of type I interferon and that some parasite species, like Toxoplasma gondii, have evolved mechanisms to suppress this response. Human foreskin fibroblasts (HFF; line BJ-5ta) were cultured to confluency in T25 flasks, infected with one representative of each of the three architypial strains of Toxoplasma gondii: GT1 (type I), Prugniaud (type II) and VEG (type III), or the closely related parasite species, Neospora caninum (strain Nc-Liv). RNA was collected from biological replicates for expression profiling by microarray. Uninfected HFF cells were used as a reference.
Project description:The local production of IFN-γ is important to control Toxoplasma gondii in the brain but the basis for these protective effects are not fully understood. The studies presented here reveal that the ability of IFN-γ to inhibit parasite replication in astrocytes in vitro is dependent on signal transducer and activator of transcription 1 (STAT1) and that mice that specifically lack STAT1 in astrocytes are unable to limit parasite replication in the central nervous system (CNS). This susceptibility is associated with a loss of anti-microbial pathways but also altered local immune responses that include decreased T cell production of IFN-γ and elevated expression of inhibitory receptors. These results identify a critical role for astrocytes in limiting the replication of an important opportunistic pathogen and highlight their role in coordinating local anti-parasitic responses.
Project description:To identify accessible chromatin regions in the human host cells during Toxoplasma parasite infection (uninfected, RH-infected and Pru-infected human foreskin fibroblasts) and in the obligate intracellular parasite Toxoplasma gondii (Type 1 RH strain and Type 2 Pru strain), ATAC-seq was performed.