STAT1 signaling in astrocytes is essential for control of infection in the central nervous system
Ontology highlight
ABSTRACT: The local production of IFN-γ is important to control Toxoplasma gondii in the brain but the basis for these protective effects are not fully understood. The studies presented here reveal that the ability of IFN-γ to inhibit parasite replication in astrocytes in vitro is dependent on signal transducer and activator of transcription 1 (STAT1) and that mice that specifically lack STAT1 in astrocytes are unable to limit parasite replication in the central nervous system (CNS). This susceptibility is associated with a loss of anti-microbial pathways but also altered local immune responses that include decreased T cell production of IFN-γ and elevated expression of inhibitory receptors. These results identify a critical role for astrocytes in limiting the replication of an important opportunistic pathogen and highlight their role in coordinating local anti-parasitic responses.
Project description:Intracellular pathogens including the apicomplexan and opportunistic parasite Toxoplasma gondii profoundly modify their host cells in order to establish infection. We have shown previously that intracellular T. gondii inhibit up-regulation of regulatory and effector functions in murine macrophages (MΦ) stimulated with interferon (IFN)-γ, which is the cytokine crucial for controlling the parasites’ replication. Using genome-wide transcriptome analysis we show herein that infection with T. gondii leads to global unresponsiveness of murine macrophages to IFN-γ. More than 61% and 89% of the transcripts, which were induced or repressed by IFN-γ in non-infected MΦ, respectively, were not altered after stimulation of T. gondii-infected cells with IFN-γ. These genes are involved in a variety of biological processes, which are mostly but not exclusively related to immune responses. Analyses of the underlying mechanisms revealed that IFN-γ-triggered nuclear translocation of STAT1 still occurred in Toxoplasma-infected MΦ. However, STAT1 bound aberrantly to oligonucleotides containing the IFN-γ-responsive gamma-activated site (GAS) consensus sequence. Conversely, IFN-γ did not induce formation of active GAS-STAT1 complexes in nuclear extracts from infected MΦ. Mass spectrometry of protein complexes bound to GAS oligonucleotides showed that T. gondii-infected MΦ are unable to recruit non-muscle actin to IFN-γ-responsive DNA sequences, which appeared to be independent of stimulation with IFN-γ and of STAT1 binding. IFN-γ-induced recruitment of BRG-1 and acetylation of core histones at the IFN-γ-regulated CIITA promoter IV, but not β-actin was diminished by >90% in Toxoplasma-infected MΦ as compared to non-infected control cells. Remarkably, treatment with histone deacetylase inhibitors restored the ability of infected macrophages to express the IFN-γ regulated genes H2-A/E and CIITA. Taken together, these results indicate that Toxoplasma-infected MΦ are unable to respond to IFN-γ due to disturbed chromatin remodelling, but can be rescued using histone deacetylase inhibitors. Comparison of 4 different RNA pools with a 2-Color-Loop Design including 10 microarrays: [1] T. gondii infected and IFN-gamma treated, [2] T. gondii infected and untreated, [3] Non-infected and IFN-gamma treated, and [4] Non-infected and untreated.
Project description:The protozoan parasite Toxoplasma gondii is a highly successful intracellular pathogen, owing in part to its ability to subvert the host immune system. In particular, parasite infection suppresses STAT1 signaling in a variety of cell types, including IFN-γ activated macrophages, via a block within the nucleus. A high-throughput screen to identify genes able to overcome parasite-mediated suppression of STAT1 activity identified 9 transcription factors as enhancers of STAT1 signaling in T. gondii infected cells, including the orphan nuclear hormone receptor TLX. Expression profiling revealed that TLX is a transcriptional regulator that drives the steady-state expression of STAT1-independent genes involved brain function and development, while enhancing the output of a subset of IFN-γ-dependent target genes. Infection of TLX deficient mice with Toxoplasma results in impaired production of interleukin-12 by dendritic cells and increased parasite burden in the brain during chronic infection. These results demonstrate a previously unrecognized function for this orphan nuclear hormone receptor in regulating STAT1 signaling and host defense, and reveal that STAT1 activity can be modulated in a context-specific manner by such ‘modifiers’.
Project description:The protozoan parasite Toxoplasma gondii is a highly successful intracellular pathogen, owing in part to its ability to subvert the host immune system. In particular, parasite infection suppresses STAT1 signaling in a variety of cell types, including IFN-γ activated macrophages, via a block within the nucleus. A high-throughput screen to identify genes able to overcome parasite-mediated suppression of STAT1 activity identified 9 transcription factors as enhancers of STAT1 signaling in T. gondii infected cells, including the orphan nuclear hormone receptor TLX. Expression profiling revealed that TLX is a transcriptional regulator that drives the steady-state expression of STAT1-independent genes involved brain function and development, while enhancing the output of a subset of IFN-γ-dependent target genes. Infection of TLX deficient mice with Toxoplasma results in impaired production of interleukin-12 by dendritic cells and increased parasite burden in the brain during chronic infection. These results demonstrate a previously unrecognized function for this orphan nuclear hormone receptor in regulating STAT1 signaling and host defense, and reveal that STAT1 activity can be modulated in a context-specific manner by such ‘modifiers’.
Project description:Intracellular pathogens including the apicomplexan and opportunistic parasite Toxoplasma gondii profoundly modify their host cells in order to establish infection. We have shown previously that intracellular T. gondii inhibit up-regulation of regulatory and effector functions in murine macrophages (MΦ) stimulated with interferon (IFN)-γ, which is the cytokine crucial for controlling the parasites’ replication. Using genome-wide transcriptome analysis we show herein that infection with T. gondii leads to global unresponsiveness of murine macrophages to IFN-γ. More than 61% and 89% of the transcripts, which were induced or repressed by IFN-γ in non-infected MΦ, respectively, were not altered after stimulation of T. gondii-infected cells with IFN-γ. These genes are involved in a variety of biological processes, which are mostly but not exclusively related to immune responses. Analyses of the underlying mechanisms revealed that IFN-γ-triggered nuclear translocation of STAT1 still occurred in Toxoplasma-infected MΦ. However, STAT1 bound aberrantly to oligonucleotides containing the IFN-γ-responsive gamma-activated site (GAS) consensus sequence. Conversely, IFN-γ did not induce formation of active GAS-STAT1 complexes in nuclear extracts from infected MΦ. Mass spectrometry of protein complexes bound to GAS oligonucleotides showed that T. gondii-infected MΦ are unable to recruit non-muscle actin to IFN-γ-responsive DNA sequences, which appeared to be independent of stimulation with IFN-γ and of STAT1 binding. IFN-γ-induced recruitment of BRG-1 and acetylation of core histones at the IFN-γ-regulated CIITA promoter IV, but not β-actin was diminished by >90% in Toxoplasma-infected MΦ as compared to non-infected control cells. Remarkably, treatment with histone deacetylase inhibitors restored the ability of infected macrophages to express the IFN-γ regulated genes H2-A/E and CIITA. Taken together, these results indicate that Toxoplasma-infected MΦ are unable to respond to IFN-γ due to disturbed chromatin remodelling, but can be rescued using histone deacetylase inhibitors.
Project description:Cryptosporidium infects enterocytes, but their contribution to parasite control is not well understood. Early resistance to Cryptosporidium is dependent on the production of IFN gamma. Loss of STAT1 in enterocytes, but not dendritic cells or macrophages, antagonized early parasite control. Moreover, transcriptional profiling of enterocytes from infected mice revealed the induction of an IFN gamma signature that included multiple genes (IDO, GBP, IRG) associated with control of intracellular pathogens.
Project description:The production of IFN-γ is crucial for control of multiple enteric infections, but its impact on intestinal epithelial cells (IEC) is not well understood. Cryptosporidium parasites exclusively infect epithelial cells and the ability of interferons to activate the transcription factor STAT1 in IEC is required for parasite clearance. Here, the use of single cell RNA sequencing to profile IEC during infection revealed an increased proportion of mid-villus enterocytes during infection and induction of IFN-γ-dependent gene signatures that was comparable between uninfected and infected cells. These analyses were complemented by in vivo studies, which demonstrated that IEC expression of the IFN-γ receptor was required for parasite control. Unexpectedly, treatment of Ifng-/- mice with IFN-γ showed the IEC response to this cytokine correlates with a delayed reduction in parasite burden but did not affect parasite development. These data sets provide insight into the impact of IFN-γ on IEC and suggest a model in which IFN-γ signalling to uninfected enterocytes is important for control of Cryptosporidium.
Project description:An early hallmark of Toxoplasma gondii infection is the rapid control of the parasite population by a potent multifaceted innate immune response that engages resident and homing immune cells along with pro- and counter-inflammatory cytokines. In this context, IFN-γ activates a variety of T. gondii-targeting activities in immune and nonimmune cells but can also contribute to host immune pathology. T. gondii has evolved mechanisms to timely counteract the host IFN-γ defenses by interfering with the transcription of IFN-γ-stimulated genes. We now have identified TgIST (T. gondii inhibitor of STAT1 transcriptional activity) as a critical molecular switch that is secreted by intracellular parasites and traffics to the host cell nucleus where it inhibits STAT1-dependent proinflammatory gene expression. We show that TgIST not only sequesters STAT1 on dedicated loci but also promotes shaping of a nonpermissive chromatin through its capacity to recruit the nucleosome remodeling deacetylase (NuRD) transcriptional repressor. We found that during mice acute infection, TgIST-deficient parasites are rapidly eliminated by the homing Gr1+ inflammatory monocytes, thus highlighting the protective role of TgIST against IFN-γ-mediated killing. By uncovering TgIST functions, this study brings novel evidence on how T. gondii has devised a molecular weapon of choice to take control over a ubiquitous immune gene expression mechanism in metazoans, as a way to promote long-term parasitism.
Project description:Stringent regulation of the interferon signaling pathway is essential for maintaining the immune response to pathogens and tumors. The transcription factor STAT1 is a crucial mediator of this response. Here we show that hCAF1/CNOT7 regulates class I and II interferon pathways at different crucial steps. In resting cells hCAF1 can control STAT1 trafficking by interacting with the latent form of STAT1 in the cytoplasm. IFN treatment induces STAT1 release, suggesting that hCAF1 may shield cytoplasmic STAT1 from undesirable stimulation. Consistent, hCAF1 silencing enhances STAT1 basal promoter occupancy associated with increased expression of a subset of STAT1-regulated genes. Consequently, hCAF1 knockdown cells exhibit an increased protection against viral infection and reduced viral replication. Furthermore, hCAF1 participates in the extinction of the IFN signal, through its deadenylase activity, by speeding up the degradation of some STAT1-regulated mRNAs. Since abnormal and unbalanced JAK/STAT activation is associated with immune disorders and cancer, hCAF1 could play a major role in innate immunity and oncogenesis, contributing to tumor escape. mRNAs from cells expressing the siRNA siRNA duplexes targeting hCAF1, corresponding to the coding region 941-961 (kd) (hCAF1 NCBI Reference Sequence: NM_013354.5) and one non-targeting control siRNA (mock).
Project description:The idea that stem cell therapies work only via cell replacement is challenged by the observation of consistent intercellular molecule exchange between the graft and the host. Here we defined a mechanism of cellular signaling by which neural stem/precursor cells (NPCs) communicate with the microenvironment via extracellular vesicles (EVs), and we elucidated its molecular signature and function. We observed cytokine-regulated pathways that sort proteins and mRNAs into EVs. We described induction of interferon gamma (IFN-γ) pathway in NPCs exposed to proinflammatory cytokines that is mirrored in EVs. We showed that IFN-γ bound to EVs through Ifngr1 activates Stat1 in target cells. Finally, we demonstrated that endogenous Stat1 and Ifngr1 in target cells are indispensable to sustain the activation of Stat1 signaling by EV-associated IFN-γ/Ifngr1 complexes. Our study identifies a mechanism of cellular signaling regulated by EV-associated IFN-γ/Ifngr1 complexes, which grafted stem cells may use to communicate with the host immune system.
Project description:Type I interferons (IFN-I) are critical in antimicrobial and antitumor defense. Although IFN-I signal via the interferon-stimulated gene factor 3 (ISGF3) complex consisting of STAT1, STAT2 and IRF9, IFN-I can mediate significant biological effects via ISGF3-independent pathways. For example, absence of STAT1, STAT2 or IRF9 exacerbates neurological disease in transgenic mice with CNS-production of IFN-gamma. Here we determined the role of IFN-I-driven, ISGF3-independent signaling in regulating global gene expression in STAT1, STAT2 or IRF9-deficient murine mixed glial cell cultures (MGCs). Compared with WT, the expression of IFN-gamma-stimulated genes (ISGs) was reduced in number and magnitude in MGCs that lacked STAT1, STAT2 or IRF9. There were significantly fewer ISGs in the absence of STAT1 or STAT2 versus the absence of IRF9. The majority of ISGs regulated in the STAT1-, STAT2- or IRF9-deficient MGCs individually were shared with WT. However, only a minor number of ISGs were common to WT, STAT1-, STAT2- and IRF9-deficient MGCs. While signal pathway activation in response to IFN-gamma was rapid and transient in WT MGCs, this was delayed and prolonged and correlated with increased numbers of ISGs expressed at 12 h versus 4 h IFN-gamma exposure in all three IFN-I-signaling-deficient MGCs. In conclusion, (1) IFN-I can mediate ISG expression in MGCs via ISGF3-independent signaling pathways but with reduced efficiency, with delayed and prolonged kinetics and is more dependent on STAT1 and STAT2 than IRF9, and (2) signaling pathways not involving STAT1, STAT2 or IRF9 play a minor role only in mediating ISG expression in MGCs.