Phosphate Starvation in Chlamydomonas reinhardtii
Ontology highlight
ABSTRACT: Phosphorus (P) is an essential nutrient that is limiting in many environments. When P is scarce organisms employ strategies for conservation of internal stores, and to efficiently scavenge P from their external surroundings. In this study we investigated the acclimation response of Chlamydomonas reinhardtii to P deficiency, comparing the transcriptional profiles of P starved wild-type cells to the P replete condition. RNA was prepared from P-containing or P-deprived logarithmic growth phase cells and subjected to RNA-Seq analysis. During the 24 hours after the imposition of P starvation we observed that from the 407 significantly changing genes (> 2 fold change, corrected p-value < 0.05) in the wild-type 317 genes were up-regulated, in average 8.36-fold, and 90 genes were down-regulated by 3.43-fold, in average. Many of the upregulated genes encoded enzymes involved in specific responses to P starvation, including PHOX, encoding the major secreted alkaline phosphatase, and multiple putative, high-efficiency phosphate transporter genes. More general responses included the up-regulation of genes involved in photoprotective processes (LHCSR3, LHCSR1, LHCBM9, PTOX1) and genes involved in protein modification and degradation. Down-regulated mRNAs indicated an early stage of the reduction of chloroplast ribosomal proteins, which are considered to be a reservoir for P in the cell.
ORGANISM(S): Chlamydomonas reinhardtii
PROVIDER: GSE56505 | GEO | 2014/04/05
SECONDARY ACCESSION(S): PRJNA243546
REPOSITORIES: GEO
ACCESS DATA