The effects of putative lipase and wax ester synthase/acyl-CoA:diacylglycerol acyltransferase gene knockouts on triacylglycerol accumulation and transcriptome expression in Gordonia sp. KTR9.
Ontology highlight
ABSTRACT: Gene disruption of KTR9_0186 resulted in a 2-fold increase in TAG content in nitrogen starved cells. Lipase mutants subjected to carbon starvation, following nitrogen starvation, retained 75% more TAGs and retained pigmentation. Transcriptome expression data confirmed the deletion of KTR9_0186 and identified the up-regulation of key genes involved in fatty acid degradation, a likely compensatory mechanism for reduced TAG mobilization. The Gordonia sp. KTR9 strain used in this study has been previously described (PMID 16332812)
Project description:Gene disruption of KTR9_0186 resulted in a 2-fold increase in TAG content in nitrogen starved cells. Lipase mutants subjected to carbon starvation, following nitrogen starvation, retained 75% more TAGs and retained pigmentation. Transcriptome expression data confirmed the deletion of KTR9_0186 and identified the up-regulation of key genes involved in fatty acid degradation, a likely compensatory mechanism for reduced TAG mobilization. The Gordonia sp. KTR9 strain used in this study has been previously described (PMID 16332812) A 12 x 135K array study using total RNA recovered from triplicate cultures of KTR9 under carbon starvation and triplicate cultures of KTR9 0186 Mutant under carbon starvation.
Project description:Oleaginous microorganisms have considerable potential for biofuel and commodity chemical production. Under nitrogen-limitation, Rhodococcus jostii RHA1 grown on benzoate, an analog of lignin depolymerization products, accumulated triacylglycerols (TAGs) to 55% of its dry weight during transition to stationary phase, with the predominant fatty acids being C16:0 and C17:0. Transcriptomic analyses of RHA1 grown under conditions of N-limitation and N-excess revealed 1,826 dysregulated genes. Genes whose transcripts were more abundant under N-limitation included those involved in ammonium assimilation, benzoate catabolism, fatty acid biosynthesis and the methylmalonyl-CoA pathway. Of the 16 atf genes potentially encoding diacylglycerol O-acyltransferases, atf8 transcripts were the most abundant during N-limitation (~50-fold more abundant than during N-excess). Consistent with Atf8 being a physiological determinant of TAG accumulation, a Δatf8 mutant accumulated 70% less TAG than wild-type RHA1 while atf8 overexpression increased TAG accumulation 20%. Genes encoding type-2 phosphatidic acid phosphatases were not significantly expressed. By contrast, three genes potentially encoding phosphatases of the haloacid dehalogenase superfamily and that cluster with, or are fused with other Kennedy pathway genes were dysregulated. Overall, these findings advance our understanding of TAG metabolism in mycolic acid-containing bacteria and provide a framework to engineer strains for increased TAG production.
Project description:Investigation of gene expression level changes in Gordonia sp. KTR9 and Gordonia sp. KTR9 mutant GlnR upon exposure to high and low nitrogen conditions The Gordonia sp. KTR9 strain used in this study has been previously described by Thompson KT, Crocker FH, Fredrickson HL.2005. Mineralization of the cyclic nitramine explosive hexahydro-1,3,5-trinitro-1,3,5-triazine by Gordonia and Williamsia spp. Appl Environ Microbiol. 2005 Dec;71(12):8265-72.
Project description:BACKGROUND:Triacylglycerols (TAGs) and wax esters (WEs) are important neutral lipids which serve as energy reservoir in some plants and microorganisms. In recent years, these biologically produced neutral lipids have been regarded as potential alternative energy sources for biofuel production because of the increased interest on developing renewable and environmentally benign alternatives for fossil fuels. In bacteria, the final step in TAG and WE biosynthetic pathway is catalyzed by wax ester synthase/acyl coenzyme A (acyl-CoA):diacylglycerol acyltransferase (WS/DGAT). This bifunctional WS/DGAT enzyme is also a key enzyme in biotechnological production of liquid WE via engineering of plants and microorganisms. To date, knowledge about this class of biologically and biotechnologically important enzymes is mainly from biochemical characterization of WS/DGATs from Arabidopsis, jojoba and some bacteria that can synthesize both TAGs and WEs intracellularly, whereas little is known about WS/DGATs from eukaryotic microorganisms. RESULTS:Here, we report the identification and characterization of two bifunctional WS/DGAT enzymes (designated TrWSD4 and TrWSD5) from the marine protist Thraustochytrium roseum. Both TrWSD4 and TrWSD5 comprise a WS-like acyl-CoA acyltransferase domain and the recombinant proteins purified from Escherichia coli Rosetta (DE3) have substantial WS and lower DGAT activity. They exhibit WS activity towards various-chain-length saturated and polyunsaturated acyl-CoAs and fatty alcohols ranging from C10 to C18. TrWSD4 displays WS activity with the lowest Km value of 0.14 ?M and the highest kcat/Km value of 1.46 × 105 M-1 s-1 for lauroyl-CoA (C12:0) in the presence of 100 ?M hexadecanol, while TrWSD5 exhibits WS activity with the lowest Km value of 0.96 ?M and the highest kcat/Km value of 9.83 × 104 M-1 s-1 for decanoyl-CoA (C10:0) under the same reaction condition. Both WS/DGAT enzymes have the highest WS activity at 37 and 47 °C, and WS activity was greatly decreased when temperature exceeds 47 °C. TrWSD4 and TrWSD5 are insensitive to ionic strength and reduced WS activity was observed when salt concentration exceeded 800 mM. The potential of T. roseum WS/DGATs to establish novel process for biotechnological production of WEs was demonstrated by heterologous expression in recombinant yeast. Expression of either TrWSD4 or TrWSD5 in Saccharomyces cerevisiae quadruple mutant H1246, which is devoid of storage lipids, resulted in the accumulation of WEs, but not any detectable TAGs, indicating a predominant WS activity in yeast. CONCLUSIONS:This study demonstrates both in vitro WS and DGAT activity of two T. roseum WS/DGATs, which were characterized as unspecific acyltransferases accepting a broad range of acyl-CoAs and fatty alcohols as substrates for WS activity but displaying substrate preference for medium-chain acyl-CoAs. In vivo characterization shows that these two WS/DGATs predominantly function as wax synthase and presents the feasibility for production of WEs by heterologous hosts.
Project description:Investigation of gene expression level changes in Gordonia sp. KTR9 and Gordonia sp. KTR9 mutant GlnR upon exposure to high and low nitrogen conditions The Gordonia sp. KTR9 strain used in this study has been previously described by Thompson KT, Crocker FH, Fredrickson HL.2005. Mineralization of the cyclic nitramine explosive hexahydro-1,3,5-trinitro-1,3,5-triazine by Gordonia and Williamsia spp. Appl Environ Microbiol. 2005 Dec;71(12):8265-72. A 12 x 135K array study using total RNA recovered from triplicate cultures of KTR9 exposed to high nitrogen conditions, triplicate cultures of KTR9 exposed to low nitrogen conditions, triplicate cultures of KTR9 mutant GlnR exposed to high nitrogen conditions, triplicate cultures of KTR9 mutant GlnR exposed to low nitrogen conditions.
Project description:Three acyltransferases, DGAT1, DGTT1, and PDAT1, are induced by nitrogen starvation and are likely to have a role in TAG accumulation based on their patterns of expression. Each gene also shows increased mRNA abundance in other TAG-accumulating conditions (-S, -P, -Zn, -Fe). Insertional mutants, pdat1-1 and pdat1-2, accumulate 25% less TAG compared to the parent strain, D66+, which demonstrates the relevance of the trans-acylation pathway in Chlamydomonas. The biochemical functions of DGTT1 and PDAT1 were validated by rescue of oleic acid sensitivity and restoration of TAG accumulation in a yeast strain lacking all acyltransferase activity. Time course analysis suggest than an SBP domain transcription factor protein, whose mRNA increases precede that of other genes like DGAT1, is a candidate regulator of the N-deficiency response. An insertional mutant, nrr1-1, accumulates only 50% of the TAG compared to the parental strain in N-starvation conditions and is unaffected by other nutrient stresses, suggesting the operation of multiple signaling pathways leading to stress-induced TAG accumulation.
Project description:Triacylglycerol (TG) with high-value long-chain polyunsaturated fatty acids is beneficial to human health; consequently, there is an urgent need to broaden its sources due to the current growing demand. Mortierella alpina, one of the most representative oleaginous fungi, is the only certificated source of dietary arachidonic acid-rich oil supplied in infant formula. This study was conducted to improve TG production in M. alpina by homologous overexpression of diacylglycerol acyltransferase (DGAT) and linseed oil (LSO) supplementation. Our results showed that the homologous overexpression of MaDGAT1B and MaDGAT2A strengthened TG biosynthesis and significantly increased the TG content compared to the wild-type by 12.24% and 14.63%, respectively. The supplementation with an LSO concentration of 0.5 g/L elevated the TG content to 83.74% and total lipid yield to 4.26 ± 0.38 g/L in the M. alpina-MaDGAT2A overexpression strain. Our findings provide an effective strategy for enhancing TG production and highlight the role of DGAT in TG biosynthesis in M. alpina.
Project description:Wax ester fermentation is a unique energy gaining pathway for a unicellular phytoflagellated protozoan, Euglena gracilis, to survive under anaerobiosis. Wax esters produced in E. gracilis are composed of saturated fatty acids and alcohols, which are the major constituents of myristic acid and myristyl alcohol. Thus, wax esters can be promising alternative biofuels. Here, we report the identification and characterization of wax ester synthase/diacylglycerol acyltrasferase (WSD) isoenzymes as the terminal enzymes of wax ester production in E. gracilis. Among six possible Euglena WSD orthologs predicted by BLASTX search, gene expression analysis and in vivo evaluation for enzyme activity with yeast expressing individual recombinant WSDs indicated that two of them (EgWSD2 and EgWSD5) predominantly function as wax ester synthase. Furthermore, experiments with gene silencing demonstrated a pivotal role of both EgWSD2 and EgWSD5 in wax ester synthesis, as evidenced by remarkably reduced wax ester contents in EgWSD2/5-double knockdown E. gracilis cells treated with anaerobic conditions. Interestingly, the decreased ability to produce wax ester did not affect adaptation of E. gracilis to anaerobiosis. Lipid profile analysis suggested allocation of metabolites to other compounds including triacylglycerol instead of wax esters.