Project description:Acute metabolic challenges provide insight on how the body responds to metabolic stress. In this study, we assessed transcriptomic response in peripheral blood mononuclear cells (PBMC) to an acute glucose challenge.
Project description:Acute metabolic challenges provide insight on how the body responds to metabolic stress. In this study, we assessed transcriptomic response in peripheral blood mononuclear cells (PBMC) to an acute lipid challenge.
Project description:Acute rejection (AR) is closely associated with renal allograft dysfunction. Here, we utilised RNA sequencing (RNA-Seq) and bioinformatic methods to characterise the peripheral blood mononuclear cells (PBMCs) of patients with acute renal allograft rejection. Pretransplant blood samples were collected from 32 kidney allograft donors and 42 corresponding recipients with biopsies classified as T cell-mediated rejection (TCMR, n = 18), antibody-mediated rejection (ABMR, n = 5), and normal/non-specific changes (non-AR, n = 19). The patients with TCMR and ABMR were assigned to the AR group, and the patients with normal/non-specific changes (n = 19) were assigned to the non-AR group. We analysed RNA-Seq data for identifying differentially expressed genes (DEGs), and then gene ontology (GO) analysis, Reactome, and ingenuity pathway analysis (IPA), protein-protein interaction (PPI) network, and cell-type enrichment analysis were utilised for bioinformatics analysis. We identified DEGs in the PBMCs of the non-AR group when compared with the AR, ABMR, and TCMR groups. Pathway and GO analysis showed significant inflammatory responses, complement activation, interleukin-10 (IL-10) signalling pathways, classical antibody-mediated complement activation pathways, etc., which were significantly enriched in the DEGs. PPI analysis showed that IL-10, VEGFA, CXCL8, MMP9, and several histone-related genes were the hub genes with the highest degree scores. Moreover, IPA analysis showed that several proinflammatory pathways were upregulated, whereas antiinflammatory pathways were downregulated. The combination of NFSF14+TANK+ANKRD 33 B +HSPA1B was able to discriminate between AR and non-AR with an AUC of 92.3% (95% CI 82.8-100). Characterisation of PBMCs by RNA-Seq and bioinformatics analysis demonstrated gene signatures and biological pathways associated with AR. Our study may provide the foundation for the discovery of biomarkers and an in-depth understanding of acute renal allograft rejection.
Project description:This SuperSeries is composed of the following subset Series: GSE34158: Expression data from peripheral blood - blood draws at Pre and Post time points of Allergen inhalation challenge (PAX.GR) GSE34159: Expression data from peripheral blood - blood draws at Pre and Post time points of Allergen inhalation challenge (PAX.NGR) GSE34160: Expression data from peripheral blood - blood draws at Pre and Post time points of Allergen inhalation challenge (PAX.NGR and EDTA) Refer to individual Series
Project description:Post-acute COVID-19 syndrome (PACS) has been defined as symptoms persisting after clearance of a COVID-19 infection. We have previously demonstrated that alterations in DNA methylation (DNAm) status persist in individuals who recovered from a COVID-19 infection, but it is currently unknown if PACS is associated with epigenetic changes. We compared DNAm patterns in patients with PACS with those in controls and in healthy COVID-19 convalescents and found a unique DNAm signature in PACS patients. This signature unravelled modified pathways that regulate angiotensin II and muscarinic receptor signalling and protein-protein interaction networks that have bearings on vesicle formation and mitochondrial function.
Project description:CD8+ cells from simian immunodeficiency virus (SIV)-infected long-term non-progressors and some uninfected macaques can suppress viral replication in vitro without killing the infected cells. The aim of this study was to identify factors responsible for non-cytolytic viral suppression by transcriptional profiling and to investigate their potential impact on SIV replication. Results of microarray experiments and further validation with cells from infected and uninfected macaques revealed that FAM26F RNA levels distinguished CD8+ cells of controllers and non-controllers (P=0.001). However, FAM26F was also expressed in CD4+ T-cells and B-cells. FAM26F expression increased in lymphocytes after in vitro IFN-? treatment on average 40-fold, and ex vivo FAM26F RNA levels in peripheral blood mononuclear cells correlated with plasma IFN-? but not with IFN-?. Baseline FAM26F expression appeared to be stable for months, albeit the individual expression levels varied up to tenfold. Investigating its role in SIV-infection revealed that FAM26F was upregulated after infection (P<0.0008), but did not directly correlate with viral load in contrast to MX1 and CXCL10. However, pre-infection levels of FAM26F correlated inversely with overall plasma viral load (AUC) during the acute and post-acute phases of infection (e.g. AUC weeks post infection 0-8; no AIDS vaccine: P<0.0001, Spearman rank correlation coefficient (rs)=-0.89, n=16; immunized with an AIDS vaccine: P=0.033, rs=-0.43; n=25). FAM26F transcript levels prior to infection can provide information about the pace and strength of the antiviral immune response during the early stage of infection. FAM26F expression represented, in our experiments, one of the earliest prognostic markers, and could supplement major histocompatibility complex (MHC)-typing to predict disease progression before SIV-infection.
Project description:Transcriptional profiling of human peripheral mononuclear cells in patients with leukemic cutaneous T-cell lymphoma (CTCL): a pilot study of effects of extracorporeal photopheresis (ECP) in clinically responsive and non-responsive/resistant patients