Other

Dataset Information

0

Genome-wide DNA hypomethylation and RNA:DNA hybrid accumulation in Aicardi-Goutières syndrome


ABSTRACT: Aicardi-Goutières syndrome (AGS) is a severe childhood inflammatory disorder that shows clinical and genetic overlap with systemic lupus erythematosus (SLE). AGS is thought to arise from the accumulation of incompletely metabolized endogenous nucleic acid species owing to mutations in nucleic acid degrading enzymes TREX1 (AGS1), RNase H2 (AGS2, 3 and 4) and SAMHD1 (AGS5). However, the identity and source of such immunogenic nucleic acid species remain undefined. Using genome-wide approaches, we show that fibroblasts from AGS patients with AGS1-5 mutations are burdened by excessive loads of RNA:DNA hybrids. Using MethylC-seq, we show that AGS fibroblasts display pronounced and global loss of DNA methylation and demonstrate that AGS-specific RNA:DNA hybrids often occur within DNA hypomethylated regions. Altogether, our data suggest that RNA:DNA hybrids may represent a common immunogenic form of nucleic acids in AGS and provide the first evidence of epigenetic perturbations in AGS, furthering the links between AGS and SLE.

ORGANISM(S): Homo sapiens

PROVIDER: GSE57353 | GEO | 2015/07/17

SECONDARY ACCESSION(S): PRJNA246322

REPOSITORIES: GEO

Dataset's files

Source:
Action DRS
Other
Items per page:
1 - 1 of 1

Similar Datasets

2018-12-12 | E-MTAB-7087 | biostudies-arrayexpress
2022-02-04 | GSE146970 | GEO
2023-04-18 | GSE221644 | GEO
2023-12-25 | GSE240399 | GEO
2022-01-17 | GSE193710 | GEO
2022-01-17 | GSE193711 | GEO
2023-02-06 | PXD035182 | Pride
2022-10-26 | GSE178841 | GEO
2015-06-15 | GSE68938 | GEO
2015-06-15 | GSE68948 | GEO