Project description:The Caulobacter cell cycle includes in an asymmetric cell division that is driven by a core regulatory circuit comprised of 4 transcription factors (DnaA, GcrA, CtrA, and SciP) and a DNA methyltransferase (CcrM). Using a modified global 5’ RACE protocol we mapped 2,726 transcriptional start sites (TSS) in the 4mb Caulobacter genome and identified 586 cell cycle-regulated TSS. The core cell cycle circuit directly controls about 55% of cell cycle-regulated TSS by integrating multiple regulatory inputs within at least 322 promoters, providing a large number of transcription profiles from a small number of regulatory factors. Here, we identified previously unknown features of the core cell cycle circuit, including antisense TSS within dnaA and ctrA, plus newly identified TSS for ctrA and ccrM. Altogether, we identified 615 antisense TSS plus 241 genes that are transcribed from multiple TSS. The multiple TSS in the same promoter region often exhibit different cell cycle activation timing, These novel features of the global transcript profile add significant insight to the system architecture of the Caulobacter cell cycle regulatory circuit.
Project description:The Caulobacter cell cycle includes in an asymmetric cell division that is driven by a core regulatory circuit comprised of 4 transcription factors (DnaA, GcrA, CtrA, and SciP) and a DNA methyltransferase (CcrM). Using a modified global 5’ RACE protocol we mapped 2,726 transcriptional start sites (TSS) in the 4mb Caulobacter genome and identified 586 cell cycle-regulated TSS. The core cell cycle circuit directly controls about 55% of cell cycle-regulated TSS by integrating multiple regulatory inputs within at least 322 promoters, providing a large number of transcription profiles from a small number of regulatory factors. Here, we identified previously unknown features of the core cell cycle circuit, including antisense TSS within dnaA and ctrA, plus newly identified TSS for ctrA and ccrM. Altogether, we identified 615 antisense TSS plus 241 genes that are transcribed from multiple TSS. The multiple TSS in the same promoter region often exhibit different cell cycle activation timing, These novel features of the global transcript profile add significant insight to the system architecture of the Caulobacter cell cycle regulatory circuit.
Project description:The Caulobacter cell cycle includes in an asymmetric cell division that is driven by a core regulatory circuit comprised of 4 transcription factors (DnaA, GcrA, CtrA, and SciP) and a DNA methyltransferase (CcrM). Using a modified global 5M-bM-^@M-^Y RACE protocol we mapped 2,726 transcriptional start sites (TSS) in the 4mb Caulobacter genome and identified 586 cell cycle-regulated TSS. The core cell cycle circuit directly controls about 55% of cell cycle-regulated TSS by integrating multiple regulatory inputs within at least 322 promoters, providing a large number of transcription profiles from a small number of regulatory factors. Here, we identified previously unknown features of the core cell cycle circuit, including antisense TSS within dnaA and ctrA, plus newly identified TSS for ctrA and ccrM. Altogether, we identified 615 antisense TSS plus 241 genes that are transcribed from multiple TSS. The multiple TSS in the same promoter region often exhibit different cell cycle activation timing, These novel features of the global transcript profile add significant insight to the system architecture of the Caulobacter cell cycle regulatory circuit. Global 5' RACE was performed to map Transcription Start Sites in the Caulobacter NA1000 genome
Project description:The Caulobacter cell cycle includes in an asymmetric cell division that is driven by a core regulatory circuit comprised of 4 transcription factors (DnaA, GcrA, CtrA, and SciP) and a DNA methyltransferase (CcrM). Using a modified global 5M-bM-^@M-^Y RACE protocol we mapped 2,726 transcriptional start sites (TSS) in the 4mb Caulobacter genome and identified 586 cell cycle-regulated TSS. The core cell cycle circuit directly controls about 55% of cell cycle-regulated TSS by integrating multiple regulatory inputs within at least 322 promoters, providing a large number of transcription profiles from a small number of regulatory factors. Here, we identified previously unknown features of the core cell cycle circuit, including antisense TSS within dnaA and ctrA, plus newly identified TSS for ctrA and ccrM. Altogether, we identified 615 antisense TSS plus 241 genes that are transcribed from multiple TSS. The multiple TSS in the same promoter region often exhibit different cell cycle activation timing, These novel features of the global transcript profile add significant insight to the system architecture of the Caulobacter cell cycle regulatory circuit. Global 5' RACE was performed to measure Transcription Start Site activity at time points of the Caulobacter NA1000 cell cycle
Project description:Each Caulobacter cell cycle involves differentiation and an asymmetric cell division driven by a cyclical regulatory circuit comprised of four transcription factors (TFs) and a DNA methyltransferase. Using a modified global 5' RACE protocol, we globally mapped transcription start sites (TSSs) at base-pair resolution, measured their transcription levels at multiple times in the cell cycle, and identified their transcription factor binding sites. Out of 2726 TSSs, 586 were shown to be cell cycle-regulated and we identified 529 binding sites for the cell cycle master regulators. Twenty-three percent of the cell cycle-regulated promoters were found to be under the combinatorial control of two or more of the global regulators. Previously unknown features of the core cell cycle circuit were identified, including 107 antisense TSSs which exhibit cell cycle-control, and 241 genes with multiple TSSs whose transcription levels often exhibited different cell cycle timing. Cumulatively, this study uncovered novel new layers of transcriptional regulation mediating the bacterial cell cycle.