Temporal Dynamics of Human Cerebrospinal Fluid Vesicle microRNAs
Ontology highlight
ABSTRACT: To determine whether the microRNA content of CSF vesicles changes throughout life we performed experiments including miRNA microarrays. Hierarchical clustering analysis indicated that the miRNA content of CSF vesicles changes when patients less than 2 years are compared to those older than 70 years of age.
Project description:To determine whether the microRNA content of CSF vesicles changes throughout life we performed experiments including miRNA microarrays. Hierarchical clustering analysis indicated that the miRNA content of CSF vesicles changes when patients less than 2 years are compared to those older than 70 years of age. CSF vesicles were fractionated and isolated from patients of different ages, total RNA extracted, and subjected to miRNA microarray analysis
Project description:The development of the human brain starts in the first weeks of embryo differentiation. However, there are many relevant neurodevelopmental processes that take place after birth and during lifespan. Such a fine and changing scenario requires the coordinated expression of thousands of genes to achieve the proper specialization and inter-connectivity. In this context, microRNAs (miRNAs), which can modulate mRNA stability and translation, are gaining recognition for their involvement in both brain development and neurodevelopmental disorders. Therefore, cerebrospinal fluid (CSF) miRNAs should be perfectly differentiated in relevant age periods. In this study, we aimed to highlight the biological variability of miRNA expression in the CSF throughout life, which is also crucial for biomarker discovery in CNS pathologies, especially in children, where they are desperately needed. We analyzed the CSF microRNAome of 14 healthy children (aged 0–7.4 years) by smallRNA-Seq and compared it with previously published data in adults (N = 7) and elders (N = 11). miR-423-5p and miR-22-3p were overexpressed in the < 1 and > 3 years groups, respectively. Additionally, we detected 18 miRNAs that reached their highest peak of expression at different time-points during the lifespan and sets of miRNAs that were exclusively expressed in a specific age group. On the contrary, miR-191-5p showed stable expression in CSF from the first year of life. Our results remark the complex differential miRNA expression profile that can be observed through life, which underlines the need for including appropriate age-matched controls when the expression of CSF miRNAs is analyzed in different pathological contexts.
Project description:The proteomic profile of extracellular vesicles (EVs) from cerebrospinal fluid (CSF) can reveal novel biomarkers for diseases of the brain. Here, we validate an ultrafiltration combined with size-exclusion chromatography (UF-SEC) method for isolation of EVs from canine CSF and probed the effect of starting volume for the EV proteomics profile. Using proteomics, SEC fractions 3-5 were compared and enrichment of EV markers in fraction 3 was detected, whereas fractions 4-5 contained more apolipoproteins. Lastly, we compared starting volumes of pooled CSF (6ml, 3ml, 1ml, and 0.5ml) to evaluate the effect on the proteomic profile. A total of 180 proteins was shared regardless of the starting volume. With a 0.5ml starting volume, 743 ± 77 or 345 ± 88 proteins were identified depending on the MaxQuant settings (with and without ‘match between runs’ active). The results confirm that UF-SEC effectively isolates CSF EVs and that EV proteomic analysis can be performed from 0.5ml of canine CSF.
Project description:Cerebrospinal fluid (CSF) contains a tightly regulated, specialized immune system. Yet, little is known about how aging influences CSF immunity in cognitively typical versus cognitively impaired individuals. Here, we performed single cell RNA sequencing (scRNAseq) on CSF collected from 45 cognitively typical subjects ranging from 54-82 years old. We then assessed age-related transcriptomic changes using several bioinformatic approaches, including linear and local polynomial regression. We reveal pronounced changes to several CSF immune cell types that occur around age 75, including alterations to clonally expanded T cells and activated monocytes. We then compared CSF immune systems from cognitively typical subjects to 14 subjects with mild cognitive impairment or Alzheimer’s disease. Our results indicate disparate age-related CSF immune system perturbations in cognitively impaired subjects. These results highlight the potential to utilize CSF immune changes to identify age-related neuroinflammation in cognitively impaired individuals.
Project description:This study aimed to identify specific CSF miRNAs for diagnosing and monitoring leptomeningeal metastasis with lung adenocarcinoma. In discovery phase, we performed miRNA microarray analysis in CSF samples from leptomeningeal metastasis patients and non-leptomeningeal metastasis controls.
Project description:This study aimed to identify specific CSF miRNAs for diagnosing and monitoring leptomeningeal metastasis with lung adenocarcinoma. In discovery phase, we performed miRNA microarray analysis in matched CSF samples from leptomeningeal metastasis patients at diagnosis and after initial leptomeningeal metastasis-directed therapy.
Project description:Midlife obesity increases the risk of developing AD. Adipocyte-derived small extracellular vesicles (ad-sEVs) have been implicated as a mecha-nism in several obesity-related diseases. We hypothesized that ad-sEVs from patients with AD would contain miRNAs predicted to downregulate pathways involved in synaptic plasticity and memory formation. We isolated ad-sEVs from the serum and cerebrospinal fluid (CSF) of patients with AD and controls and compared miRNA expression profiles
Project description:Delirium is a common postoperative complication among older patients with many adverse outcomes. Due to lack of validated biomarkers, prediction and monitoring of delirium by biological testing is not currently feasible. Circulating proteins in cerebrospinal fluid (CSF) may reflect biological processes causing delirium. Our goal was to discover and investigate candidate protein biomarkers in preoperative CSF that were associated with development of postoperative delirium in older surgical patients. We employed a nested case–control study design coupled with high multiplex affinity proteomics analysis to measure 1305 proteins in preoperative CSF. Twenty-four matched delirium cases and non-delirium controls were selected from the Healthier Postoperative Recovery (HiPOR) cohort and the associations between preoperative protein levels and postoperative delirium were assessed using t-test statistics with further analysis by systems biology to elucidate delirium pathophysiology. Proteomics analysis identified 32 proteins in preoperative CSF that significantly associate with delirium (t-test p<0.05). Due to the limited sample size these proteins did not remain significant by multiple hypothesis testing using the Benjamini-Hochberg correction and q-value method. Three algorithms were applied to separate delirium cases from non-delirium controls. Hierarchical clustering classified 40/48 case-control samples correctly, principal components analysis separated 43/48. The receiver operating characteristic curve yielded an area under the curve [95% confidence interval] of 0.91 [0.80-0.97]. Systems biology analysis identified several key pathways associated with risk of delirium: inflammation, immune cell migration, apoptosis, angiogenesis, synaptic depression and neuronal cell death. Proteomics analysis of preoperative CSF identifies 32 proteins that might discriminate individuals who subsequently develop postoperative delirium from matched control samples. These proteins are potential candidate biomarkers for delirium and may play a role in its pathophysiology.
Project description:Primary central nervous system lymphoma(PCNSL) is a rare extra-nodal non-Hodgkin’s lymphoma and accounts for 3%-4% of central nervous system tumors. Recent studies have highlighted the importance of cerebrospinal fluid derived extracellular vesicles in PCNSL. Extracellular vesicles(EVs) are nanoscale vesicles with bilayer lipid membrane released by almost all cell types. EVs are present in body fluids, including urine, blood and CSF. Cerebrospinal fluid(CSF) is a colorless fluid that surrounds the brain and spinal cord and acts as lymph in the central nervous system. CSF-derived EVs contain proteins from neurons, oligodendrocytes, astrocytes and microglias. Studies of CSF EVs are mainly limited by the amount of EVs isolated from per milliliter of CSF and the volume of CSF acquired from one patient. Here, we provide a label-free quantitative phospho-proteome profiling of EVs separated from PCNSL and non-PCNSL CSF samples by an earlier introduced functional magnetic beads called EVTRAP together with highly sensitive timsTOF Pro.