Project description:We inflicted TBI to chemokine-deficient mouse lines in order to establish involvement of various signalling pathways that may be addressed therapeutically. Interacting chemokine pathways in brain regulate distinct inflammatory cells. Activated microglia are separate from invading phagocytes and dendritic cells. Findings show potential targets to interfere with specific inflammatory responses after brain injury.
Project description:We inflicted TBI to chemokine-deficient mouse lines in order to establish involvement of various signalling pathways that may be addressed therapeutically. Interacting chemokine pathways in brain regulate distinct inflammatory cells. Activated microglia are separate from invading phagocytes and dendritic cells. Findings show potential targets to interfere with specific inflammatory responses after brain injury. TBI was carried out in Ccl3-/- and Ccr2-/- mice, total RNA prepared from injured cerebral neocortex after three days. RNA samples were from uninjured Ccl3-/- and Ccr2-/- mice as reference for hybridization on Affymetrix microarrays.
Project description:We inflicted TBI to wildetype (wt) mice in order to establish whether the anti-inflammatory agent cyclophosphamide can be used therapeutically. Cyclophosphamide was found to regulate distinct inflammatory cells such as activated microglia separate from invading phagocytes and dendritic cells. Cyclophosphamide postinjury selectively reduces antigen-presenting dendritic cells. Findings show feasibility of drug development to interfere with brain inflammation.
Project description:We inflicted TBI to wildetype (wt) mice in order to establish whether the anti-inflammatory agent cyclophosphamide can be used therapeutically. Cyclophosphamide was found to regulate distinct inflammatory cells such as activated microglia separate from invading phagocytes and dendritic cells. Cyclophosphamide postinjury selectively reduces antigen-presenting dendritic cells. Findings show feasibility of drug development to interfere with brain inflammation. TBI was carried out in injured wt B6 mice for postinjury treatment with cyclophospamide i.p. using saline as a control substance for comparison with injured but untreated mice. Total RNA was prepared from injured cerebral neocortex after three days. RNA samples were also from uninjured wt mice as reference for hybridization on Affymetrix microarrays.
Project description:Biomarkers can be broadly defined as qualitative or quantitative measurements that convey information on the physiopathological state of a subject at a certain time point or disease state. Biomarkers can indicate health, pathology, or response to treatment, including unwanted side effects. When used as outcomes in clinical trials, biomarkers act as surrogates or substitutes for clinically meaningful endpoints. Biomarkers of disease can be diagnostic (the identification of the nature and cause of a condition) or prognostic (predicting the likelihood of a person's survival or outcome of a disease). In addition, genetic biomarkers can be used to quantify the risk of developing a certain disease. In the specific case of traumatic brain injury, surrogate blood biomarkers of imaging can improve the standard of care and reduce the costs of diagnosis. In addition, a prognostic role for biomarkers has been suggested in the case of post-traumatic epilepsy. Given the extensive literature on clinical biomarkers, we will focus herein on biomarkers which are present in peripheral body fluids such as saliva and blood. In particular, blood biomarkers, such as glial fibrillary acidic protein and salivary/blood S100B, will be discussed together with the use of nucleic acids (eg, DNA) collected from peripheral cells.
Project description:Our knowledge of the pathophysiology about traumatic brain injury (TBI) is still limited. Neutrophils, as the most abundant leukocytes in circulation and the first-line transmigrated immune cells at the sites of injury, are highly involved in the initiation, development, and recovery of TBI. Nonetheless, our understanding about neutrophils in TBI is obsolete, and mounting evidences from recent studies have challenged the conventional views. This review summarizes what is known about the relationships between neutrophils and pathophysiology of TBI. In addition, discussions are made on the complex roles as well as the controversial views of neutrophils in TBI.