Dissecting engineered cell types and enhancing cell fate conversion via CellNet
Ontology highlight
ABSTRACT: Engineering clinically relevant cells in vitro holds promise for regenerative medicine, but most protocols fail to faithfully recapitulate target cell properties. To address this, we developed CellNet, a network biology platform that determines whether engineered cells are equivalent to their target tissues, diagnoses aberrant gene regulatory networks, and prioritizes candidate transcriptional regulators to enhance engineered conversions. Using CellNet, we improved B cell to macrophage conversion, transcriptionally and functionally, by knocking down predicted B cell regulators. Analyzing conversion of fibroblasts to induced hepatocytes (iHeps), CellNet revealed an unexpected intestinal program regulated by the master regulator Cdx2. We observed functional engraftment of mouse colon by iHeps, thereby establishing their broader potential as endoderm progenitors and demonstrating direct conversion of fibroblasts into intestinal epithelium. Our studies illustrate how CellNet can be employed to improve direct conversion and to uncover unappreciated properties of engineered cells.
Project description:Engineering clinically relevant cells in vitro holds promise for regenerative medicine, but most protocols fail to faithfully recapitulate target cell properties. To address this, we developed CellNet, a network biology platform that determines whether engineered cells are equivalent to their target tissues, diagnoses aberrant gene regulatory networks, and prioritizes candidate transcriptional regulators to enhance engineered conversions. Using CellNet, we improved B cell to macrophage conversion, transcriptionally and functionally, by knocking down predicted B cell regulators. Analyzing conversion of fibroblasts to induced hepatocytes (iHeps), CellNet revealed an unexpected intestinal program regulated by the master regulator Cdx2. We observed functional engraftment of mouse colon by iHeps, thereby establishing their broader potential as endoderm progenitors and demonstrating direct conversion of fibroblasts into intestinal epithelium. Our studies illustrate how CellNet can be employed to improve direct conversion and to uncover unappreciated properties of engineered cells. 15 samples
Project description:Recent studies have shown that defined hepatic factors could lead to the direct conversion of fibroblasts into induced hepatocytes (iHeps). However, reported conversion efficiencies are vey low and the underlying mechanism of the hepatic lineage conversion is largely unknown. Here, we report that direct conversion into iHeps is a stepwise transition involving erasure of somatic memory, mesenchymal-to-epithelial transition, and induction of hepatic cell fate in a sequential manner. Throughout screening for additional factors that could potentially enhance the kinetics of the MET and hepatic programs, we have found that c-Myc and Klf4 (CK) dramatically accelerate the conversion kinetics, resulting in remarkably improved generation of iHeps (>87 fold). Furthermore, we identified small molecules that could replace the roles of CK and thus led to the highly efficient generation of iHeps without CK. Finally, we show that a single factor (Hnf1α) supported by small molecules is sufficient to robustly induce transprogramming of fibroblasts into functional hepatocyte-like cells with high yield. This novel approach might help to fully elucidate the direct conversion process and also facilitate the translation of iHep into clinic.
Project description:Recent studies have shown that defined sets of transcription factors could directly convert fibroblasts into induced hepatocytes (iHeps). However, the underlying mechanism of direct conversion process toward a hepatic lineage is largely unknown. Here, we report that the direct conversion kinetics from fibroblasts into iHeps throughout screening multiple additional factors that potentially rescue the delayed kinetics of MET and hepatic program. Mouse embryonic fibroblasts (MEFs) were efficiently converted into iHeps in the presence of c-Myc and Klf4 (CK), the activators for MET process, with the previously defined sets of hepatic transcription factors, resulting in remarkably improved generation of iHeps. Furthermore, in the presence of CK, Hnf4? alone could convert fibroblasts into iHeps within 5 days with a relatively higher efficiency. Cells transduced with different combinations of factors were cultured in standard Hep medium. Epithelial colonies were observed within 5 days with much higher numbers in the presence of additional factor, c-Myc and Klf4, compared to control group, indicating the number of epithelial colony was dramatically increased in the presence of additional stem cell factors
Project description:We show direct conversion of mouse fibroblasts to cells that closely resemble intestinal stem cells (ISCs), through the state of fetal-type progenitor cells, called FIPCs. The induced ISCs (iISCs) exhibit self-renewal capacity and intestinal multi-lineage differentiation potential. Upon transplantation, iFIPCs and iISCs reconstitute colonic and intestinal epithelia, respectively.
Project description:Fibroblasts can be directly reprogrammed to induced renal tubular epithelial cells (iRECs) using four transcription factors. These engineered cells may be used for disease modeling, cell replacement therapy or drug and toxicity testing. Direct reprogramming induces drastic changes in the transcriptional landscape, protein expression, morphological and functional properties of cells. However, how the metabolome is changed by reprogramming and to what degree it resembles the target cell type remains unknown. Using untargeted gas chromatography-mass spectrometry (GC-MS) and targeted liquid chromatography-MS, we characterized the metabolome of mouse embryonic fibroblasts (MEFs), iRECs, mIMCD-3 cells, and whole kidneys. Metabolic fingerprinting can distinguish each cell type reliably, revealing iRECs are most similar to mIMCD-3 cells and clearly separate from MEFs used for reprogramming. Treatment with the cytotoxic drug cisplatin induced typical changes in the metabolic profile of iRECs commonly occurring in acute renal injury. Interestingly, metabolites in the medium of iRECs, but not of mIMCD-3 cells or fibroblast could distinguish treated and non-treated cells by cluster analysis. In conclusion, direct reprogramming of fibroblasts into renal tubular epithelial cells strongly influences the metabolome of engineered cells, suggesting that metabolic profiling may aid in establishing iRECs as in vitro models for nephrotoxicity testing in the future.
Project description:Epigenetic modifications play crucial roles on establishment of tissue-specific transcription profiles and cellular characteristics. Direct conversions of fibroblasts into differentiated tissue cells by over-expression of critical transcription factors have been reported, but the epigenetic mechanisms underlying these conversions are still not fully understood. In addition, conversion of somatic cells into germ cells has not yet been achieved. To understand epigenetic mechanisms that underlie germ cell characteristics, we attempted to use defined epigenetic factors to directly convert mouse embryonic fibroblasts (MEFs) into germ cells. Here, we successfully induced germ cell-specific genes by inhibiting repressive epigenetic modifications via RNAi or small-molecule compounds. Under these conditions, some tissue-specific genes and stimulus-inducible genes were also induced. Meanwhile, the treatments did not result in genome-wide transcriptional activation. These results suggested that a permissive epigenetic environment resulted in selective de-repression of stimulus- and differentiation-inducible genes including germ cell-specific genes in MEFs.
Project description:Induced pluripotent stem cell-derived human hepatocyte-like cells (iHeps) could provide a powerful tool for studying the mechanisms underlying human liver development and disease, testing the efficacy and safety of pharmaceuticals across different patients (i.e. personalized medicine), and enabling cell-based therapies in the clinic. However, current in vitro protocols that rely upon growth factors and extracellular matrices (ECM) alone yield iHeps with low levels of liver functions relative to adult primary human hepatocytes (PHHs). Moreover, these low hepatic functions in iHeps are difficult to maintain for prolonged times (weeks to months) in culture. Here, we engineered a micropatterned co-culture (iMPCC) platform in a multi-well format that, in contrast to conventional confluent cultures, significantly enhanced the functional maturation and longevity of iHeps in culture for 4 weeks in vitro when benchmarked against multiple donors of PHHs. In particular, iHeps were micropatterned onto collagen-coated domains of empirically optimized dimensions, surrounded by 3T3-J2 murine embryonic fibroblasts, and then sandwiched with a thin layer of ECM gel (Matrigel™). We assessed iHep maturity via global gene expression profiles, hepatic polarity, secretion of albumin and urea, basal CYP450 activities, phase-II conjugation, drug-mediated CYP450 induction, and drug-induced hepatotoxicity. Conclusion: Controlling both homotypic interactions between iHeps and heterotypic interactions with stromal fibroblasts significantly matures iHep functions and maintains them for several weeks in culture. In the future, iMPCCs could prove useful for drug screening, studying molecular mechanisms underlying iHep differentiation, modeling liver diseases, and integration into human-on-a-chip systems being designed to assess multi-organ responses to compounds. We used Affymetrix microarrays to profile the global gene expression of co-culture stabilized iHeps (iMPCCs) relative to freshly isolated and co-culture stabilized primary human hepatocytes (2 donors). To assess the transcriptomic stability of iHeps in iMPCCs, RNA was extracted following 9 and 21 days of culture for hybridization to Affymetrix microarrays. The hepatic maturation state of iHeps was assessed by comparing gene expression against microarrays containing data from two primary human hepatocyte donors, both following hepatocyte isolation (day 0) and after stabilization in the micropatterened co-culture platform (day 6 and day 42 MPCCs), as previously described.
Project description:Induced pluripotent stem cell-derived human hepatocyte-like cells (iHeps) could provide a powerful tool for studying the mechanisms underlying human liver development and disease, testing the efficacy and safety of pharmaceuticals across different patients (i.e. personalized medicine), and enabling cell-based therapies in the clinic. However, current in vitro protocols that rely upon growth factors and extracellular matrices (ECM) alone yield iHeps with low levels of liver functions relative to adult primary human hepatocytes (PHHs). Moreover, these low hepatic functions in iHeps are difficult to maintain for prolonged times (weeks to months) in culture. Here, we engineered a micropatterned co-culture (iMPCC) platform in a multi-well format that, in contrast to conventional confluent cultures, significantly enhanced the functional maturation and longevity of iHeps in culture for 4 weeks in vitro when benchmarked against multiple donors of PHHs. In particular, iHeps were micropatterned onto collagen-coated domains of empirically optimized dimensions, surrounded by 3T3-J2 murine embryonic fibroblasts, and then sandwiched with a thin layer of ECM gel (Matrigel™). We assessed iHep maturity via global gene expression profiles, hepatic polarity, secretion of albumin and urea, basal CYP450 activities, phase-II conjugation, drug-mediated CYP450 induction, and drug-induced hepatotoxicity. Conclusion: Controlling both homotypic interactions between iHeps and heterotypic interactions with stromal fibroblasts significantly matures iHep functions and maintains them for several weeks in culture. In the future, iMPCCs could prove useful for drug screening, studying molecular mechanisms underlying iHep differentiation, modeling liver diseases, and integration into human-on-a-chip systems being designed to assess multi-organ responses to compounds. We used Affymetrix microarrays to profile the global gene expression of co-culture stabilized iHeps (iMPCCs) relative to freshly isolated and co-culture stabilized primary human hepatocytes (2 donors).
Project description:Primary Hyperoxaluria Type 1 (PH1) is a rare inherited metabolic disorder characterized by oxalate overproduction in the liver, resulting in renal damage. It is caused by mutations in the AGXT gene. Combined liver and kidney transplantation is currently the only permanent curative treatment. We combined locus-specific gene correction and hepatic direct cell reprogramming to generate autologous healthy induced hepatocytes (iHeps) from PH1 patient-derived fibroblasts. First, site-specific AGXT corrected cells were obtained by homology directed repair (HDR) assisted by CRISPR/Cas9, following two different strategies: accurate point mutation (c.853T>C) correction or knock-in of an enhanced version of AGXT cDNA. Then, iHeps were generated, by overexpression of hepatic transcription factors. Generated AGXT-corrected iHeps showed hepatic gene expression profile and exhibited in vitro reversion of oxalate accumulation compared to non-edited PH1-derived iHeps. This strategy set up a potential alternative cellular source for liver cell replacement therapy and a personalized PH1 in vitro disease model.