Project description:Brown adipocytes and muscle and dorsal dermis descend from precursor cells in the dermomyotome, but the factors that regulate commitment to the brown adipose lineage are unknown. Here, we prospectively isolated and determined the molecular profile of embryonic brown preadipose cells. Brown adipogenic precursor activity in embryos was confined to platelet-derived growth factor α(+), myogenic factor 5(Cre)-lineage-marked cells. RNA-sequence analysis identified early B-cell factor 2 (Ebf2) as one of the most selectively expressed genes in this cell fraction. Importantly, Ebf2-expressing cells purified from Ebf2(GFP) embryos or brown fat tissue did not express myoblast or dermal cell markers and uniformly differentiated into brown adipocytes. Interestingly, Ebf2-expressing cells from white fat tissue in adult animals differentiated into brown-like (or beige) adipocytes. Loss of Ebf2 in brown preadipose cells reduced the expression levels of brown preadipose-signature genes, whereas ectopic Ebf2 expression in myoblasts activated brown preadipose-specific genes. Altogether, these results indicate that Ebf2 specifically marks and regulates the molecular profile of brown preadipose cells.
Project description:Brown adipocytes, muscle and dorsal dermis descend from precursor cells in the dermomyotome, but the factors that regulate commitment to the brown adipose lineage are unknown. Here, we prospectively isolated and determined the molecular profile of embryonic brown preadipose cells. Brown adipogenic precursor activity in embryos was confined to Pdgfrα+, Myf5Cre-lineage-marked cells. RNAseq analysis identified Early B Cell Factor-2 (Ebf2) as one of the most selectively expressed genes in this cell fraction. Importantly, Ebf2-expressing cells purified from Ebf2-GFP embryos or brown fat tissue did not express myoblast or dermal cell markers and uniformly differentiated into brown adipocytes. Interestingly, Ebf2-expressing cells from white fat tissue in adult animals differentiated into brown-like (or beige) adipocytes. Loss of Ebf2 in brown preadipose cells reduced the expression levels of brown preadipose-signature genes, whereas ectopic Ebf2-expression in myoblasts activated brown preadipose-specific genes. Altogether, these results indicate that Ebf2 specifically marks and regulates the molecular profile of brown preadipose cells. Embryonic fibroblasts, isolated from dorsal body wall of E14.5 Ebf2(GFP)/+ embryos, were further fractionated based on the expression of PDGFRα and Ebf2 (GFP). Affymetrix microarray analysis was prefromed,to compare the gene expression between PDGFRα+ Ebf2(GFP)- and PDGFRα+ Ebf2(GFP)+ cells.
Project description:Brown adipocytes, muscle and dorsal dermis descend from precursor cells in the dermomyotome, but the factors that regulate commitment to the brown adipose lineage are unknown. Here, we prospectively isolated and determined the molecular profile of embryonic brown preadipose cells. Brown adipogenic precursor activity in embryos was confined to Pdgfrα+, Myf5Cre-lineage-marked cells. RNAseq analysis identified Early B Cell Factor-2 (Ebf2) as one of the most selectively expressed genes in this cell fraction. Importantly, Ebf2-expressing cells purified from Ebf2-GFP embryos or brown fat tissue did not express myoblast or dermal cell markers and uniformly differentiated into brown adipocytes. Interestingly, Ebf2-expressing cells from white fat tissue in adult animals differentiated into brown-like (or beige) adipocytes. Loss of Ebf2 in brown preadipose cells reduced the expression levels of brown preadipose-signature genes, whereas ectopic Ebf2-expression in myoblasts activated brown preadipose-specific genes. Altogether, these results indicate that Ebf2 specifically marks and regulates the molecular profile of brown preadipose cells.
Project description:Brown adipocytes, muscle and dorsal dermis descend from precursor cells in the dermomyotome, but the factors that regulate commitment to the brown adipose lineage are unknown. Here, we prospectively isolated and determined the molecular profile of embryonic brown preadipose cells. Brown adipogenic precursor activity in embryos was confined to Pdgfrα+, Myf5Cre-lineage-marked cells. RNAseq analysis identified Early B Cell Factor-2 (Ebf2) as one of the most selectively expressed genes in this cell fraction. Importantly, Ebf2-expressing cells purified from Ebf2-GFP embryos or brown fat tissue did not express myoblast or dermal cell markers and uniformly differentiated into brown adipocytes. Interestingly, Ebf2-expressing cells from white fat tissue in adult animals differentiated into brown-like (or beige) adipocytes. Loss of Ebf2 in brown preadipose cells reduced the expression levels of brown preadipose-signature genes, whereas ectopic Ebf2-expression in myoblasts activated brown preadipose-specific genes. Altogether, these results indicate that Ebf2 specifically marks and regulates the molecular profile of brown preadipose cells. Embryonic fibroblasts, isolated from dorsal body wall of E14.5 Myf5-CrE;mTmG embryos, were further fractionated based on the expression of PDGFRα, Itga7 and Myf5-cre (GFP). Total mRNA profiles from Myf5-cre(GFP)+PDGFRα+ and Myf5-cre(GFP)+PDGFRα-Itga7+ cells were generated by deep sequenceing
Project description:Brown adipocytes, muscle and dorsal dermis descend from precursor cells in the dermomyotome, but the factors that regulate commitment to the brown adipose lineage are unknown. Here, we prospectively isolated and determined the molecular profile of embryonic brown preadipose cells. Brown adipogenic precursor activity in embryos was confined to Pdgfrα+, Myf5Cre-lineage-marked cells. RNAseq analysis identified Early B Cell Factor-2 (Ebf2) as one of the most selectively expressed genes in this cell fraction. Importantly, Ebf2-expressing cells purified from Ebf2-GFP embryos or brown fat tissue did not express myoblast or dermal cell markers and uniformly differentiated into brown adipocytes. Interestingly, Ebf2-expressing cells from white fat tissue in adult animals differentiated into brown-like (or beige) adipocytes. Loss of Ebf2 in brown preadipose cells reduced the expression levels of brown preadipose-signature genes, whereas ectopic Ebf2-expression in myoblasts activated brown preadipose-specific genes. Altogether, these results indicate that Ebf2 specifically marks and regulates the molecular profile of brown preadipose cells.
Project description:Transcriptional and epigenetic regulation is fundamentally involved in initiating and maintaining progression of cellular differentiation. The 2 types of thermogenic adipocytes, brown and beige, are thought to be of different origins but share functionally similar phenotypes. Here, we report that lysine-specific demethylase 2 (LSD2) regulates the expression of genes associated with lineage identity during the differentiation of brown and beige adipogenic progenitors in mice. In HB2 mouse brown preadipocytes, short hairpin RNA-mediated knockdown (KD) of LSD2 impaired formation of lipid droplet-containing adipocytes and down-regulated brown adipogenesis-associated genes. Transcriptomic analysis revealed that myogenesis-associated genes were up-regulated in LSD2-KD cells under adipogenic induction. In addition, loss of LSD2 during later phases of differentiation had no obvious influence on adipogenic traits, suggesting that LSD2 functions during earlier phases of brown adipocyte differentiation. Using adipogenic cells from the brown adipose tissues of LSD2-knockout (KO) mice, we found reduced expression of brown adipogenesis genes, whereas myogenesis genes were not affected. In contrast, when LSD2-KO cells from inguinal white adipose tissues were subjected to beige induction, these cells showed a dramatic rise in myogenic gene expression. Collectively, these results suggest that LSD2 regulates distinct sets of genes during brown and beige adipocyte formation.-Takase, R., Hino, S., Nagaoka, K., Anan, K., Kohrogi, K., Araki, H., Hino, Y., Sakamoto, A., Nicholson, T. B., Chen, T., Nakao, M. Lysine-specific demethylase-2 is distinctively involved in brown and beige adipogenic differentiation.
Project description:It has been reported that class I histone deacetylase (HDAC) inhibition increases thermogenesis in fat, but adipocyte-specific Hdac3 deletions have presented inconsistent results. In this study, we observed that HDAC3 protein levels were lower in brown fat compared with inguinal subcutaneous adipose tissue, and they decreased in both fat depots upon cold exposure. PR domain-containing 16 (PRDM16) physically interacted with HDAC3, and treatment with HDAC3-selective inhibitor RGFP966 induced thermogenic gene expression in murine and human fat cultures. This induction was blunted in the absence of PRDM16. Our results provide evidence that HDAC3 is involved in thermogenesis, suggesting selective inhibition of HDAC3 in brown and beige fat might hold therapeutic potential for counteracting human obesity and metabolic disorders.