Modification of C-terminal Domain (CTD) of RPB1 plays a role in transcriptome change upon salt stress
Ontology highlight
ABSTRACT: Transctriptome profiling of CTD-14 repeats, 2A, 5A mutants responding to 0.7N NaCl for 30mins. The study shows that phosphorylation at Ser5 sites plays a role in normal induction and repression of genes upon NaCl stress. The CTD14 strains harbors a plasmid expressing RPB1 with 14 wild-type CTD repeats. 5A strains carries a plasmid expressing a chimeric RPB1 in which the CTD was composed of 5 repeats of CTD-serine 5 substituted with Ala followed by 7 wild-type-sequenced repeats. The 2A strains carrys 8 repeats of CTD-serine 2 substituted with alanine followed by 7 wild-type-sequenced repeats.
Project description:Transctriptome profiling of CTD-14 repeats, 2A, 5A mutants responding to 0.7N NaCl for 30mins. The study shows that phosphorylation at Ser5 sites plays a role in normal induction and repression of genes upon NaCl stress. The CTD14 strains harbors a plasmid expressing RPB1 with 14 wild-type CTD repeats. 5A strains carries a plasmid expressing a chimeric RPB1 in which the CTD was composed of 5 repeats of CTD-serine 5 substituted with Ala followed by 7 wild-type-sequenced repeats. The 2A strains carrys 8 repeats of CTD-serine 2 substituted with alanine followed by 7 wild-type-sequenced repeats. Two-color fluorescence arrays reporting on mRNA abunance in strains before and after 30 min with 0.7M NaCl treatment
Project description:The modification of Ser 5 is important for the relocalization of RNAP II upon NaCl stress. The CTD14 strains harbors a plasmid expressing RPB1 with 14 wild-type CTD repeats. The 5A strain carries a plasmid expressing a chimeric RPB1 in which the CTD was composed of 5 repeats of CTD-serine 5 substituted with alanine followed by 7 wild-type-sequenced repeats.
Project description:The modification of Ser 5 is important for the relocalization of RNAP II upon NaCl stress. The CTD14 strains harbors a plasmid expressing RPB1 with 14 wild-type CTD repeats. The 5A strain carries a plasmid expressing a chimeric RPB1 in which the CTD was composed of 5 repeats of CTD-serine 5 substituted with alanine followed by 7 wild-type-sequenced repeats. Two-color fluorescence arrays reporting on Rpb3 localization abundance in strains (input vs. IP) before and at 20 min after a shock with 0.7M NaCl
Project description:RNA Polymerase II transcribes protein-coding and many non-coding RNA genes in eukaryotes. The largest subunit of RNA Polymerase II, Rpb1, contains a hepta-peptide repeat on its C-terminal tail with three potential phosphorylation sites (Serine 2, Serine 5 and Serine 7). Mammalian Rpb1 contains 52 repeats. The phosphorylation events are catalyzed by specific protein kinases where the phosphorylation of specific residues is coupled to the transcription cycle. For example, the Cdk7 subunit of TFIIH phosphorylates both Serine 5 and Serine 7 during intiation and the Cdk9 subunit of P-TEFb phosphorylates Serine 2 during the transition into productive elongation. The dataset presented here is the genome-wide distribution of RNA Pol II with Serine 7 of the CTD phosphorylated in murine embryonic stem cells. This data, in addition to phospho-specific datasets generated in the same cell type in Rahl et al. Cell 2010 and Seila et al. Science 2008, represents the genome-wide distribution of multiple RNA Pol II isoforms in murine embryonic stem cells: total Pol II, hypophosphorylated CTD Pol II, Serine 2 phosphorylated CTD Pol II, Serine 5 phosphorylated CTD Pol II and Serine 7 phosphorylated CTD Pol II. An antibody specific to RNA Pol II Serine 7 phosphorylated CTD (gift of Dirk Eick; Chapman et al. Science 2008) was used to enrich for DNA fragments associated with this Pol II isoform in murine embryonic stem cells. DNA was purified and prepared for Illumina/Solexa sequencing following their standard protocol. This is a single dataset but together with datasets from Rahl et al. Cell 2010 and Seila et al. Science 2008, these datasets represent the genome-wide distribution of multiple RNA Pol II isoforms in murine embryonic stem cells: total Pol II, hypophosphorylated CTD Pol II, Serine 2 phosphorylated CTD Pol II, Serine 5 phosphorylated CTD Pol II and Serine 7 phosphorylated CTD Pol II.
Project description:RNA Polymerase II transcribes protein-coding and many non-coding RNA genes in eukaryotes. The largest subunit of RNA Polymerase II, Rpb1, contains a hepta-peptide repeat on its C-terminal tail with three potential phosphorylation sites (Serine 2, Serine 5 and Serine 7). Mammalian Rpb1 contains 52 repeats. The phosphorylation events are catalyzed by specific protein kinases where the phosphorylation of specific residues is coupled to the transcription cycle. For example, the Cdk7 subunit of TFIIH phosphorylates both Serine 5 and Serine 7 during intiation and the Cdk9 subunit of P-TEFb phosphorylates Serine 2 during the transition into productive elongation. The dataset presented here is the genome-wide distribution of RNA Pol II with Serine 7 of the CTD phosphorylated in murine embryonic stem cells. This data, in addition to phospho-specific datasets generated in the same cell type in Rahl et al. Cell 2010 and Seila et al. Science 2008, represents the genome-wide distribution of multiple RNA Pol II isoforms in murine embryonic stem cells: total Pol II, hypophosphorylated CTD Pol II, Serine 2 phosphorylated CTD Pol II, Serine 5 phosphorylated CTD Pol II and Serine 7 phosphorylated CTD Pol II.
Project description:The carboxy-terminal domain (CTD) of Rpb1, the largest component of the 12-subunit RNA polymerase II, consists of repeating Y1S2P3T4S5P6S7 heptapeptides (26 repeats in budding yeast). Each stage of transcription relies on the ordered recruitment and exchange of specific protein complexes that act on RNA polymerase II, its nascent transcripts, and the underlying chromatin. This dynamic process is orchestrated via patterned post-translational modifications of the CTD. To characterize the role of phosphorylation on Thr4, we examined the effect of Rpb1 alleles in which Thr4 was substituted with an alanine (T4A) or the phospho-mimic glutamate (T4E). Substitutions were made across all heptad repeats of the CTD.
We affinity purified HA-tagged Rpb1 from Saccharomyces cerevisiae strains bearing WT, T4A, and T4E CTDs. A control strain (Z26) lacking the HA-tagged Rpb1 was subjected to an identical affinity enrichment procedure. Three biological replicates were acquired for each type of affinity purification and analyzed independently. After TCA-precipitation, proteins were urea-denatured, reduced, alkylated, then digested with endoproteinase LysC followed by trypsin. The resulting peptide mixtures were analyzed by Multidimensional Protein Identification Technology (MudPIT). Label-free quantitative proteomics was used to identify and quantify the relative abundance of affinity-enriched complexes.
Project description:RPB1, the largest subunit of RNA polymerase II, contains a highly modifiable C-terminal domain (CTD) that consists of variations of a consensus heptad repeat sequence (Y1S2P3T4S5P6S7). The consensus CTD repeat motif and tandem organization represent the ancestral state of eukaryotic RPB1, but across eukaryotes CTDs show considerable diversity in repeat organization and sequence content. These differences may reflect lineage-specific CTD functions mediated by protein interactions. Mammalian CTDs contain eight non-consensus repeats with a lysine in the seventh position (K7). Posttranslational acetylation of these sites was recently shown to be required for proper polymerase pausing and regulation of two growth factor-regulated genes. To investigate the origins and function of RPB1 CTD acetylation (acRPB1), we computationally reconstructed the evolution of the CTD repeat sequence across eukaryotes and analyzed the evolution and function of genes dysregulated when acRPB1 is disrupted. Modeling the evolutionary dynamics of CTD repeat count and sequence content across diverse eukaryotes revealed an expansion of the CTD in the ancestors of Metazoa. The new CTD repeats introduced the potential for acRPB1 due to the appearance of distal repeats with lysine at position seven. This was followed by a further increase in the number of lysine-containing repeats in developmentally complex clades like Deuterostomia. Mouse genes enriched for acRPB1 occupancy at their promoters and genes with significant expression changes when acRPB1 is disrupted are enriched for several functions, such as growth factor response, gene regulation, cellular adhesion, and vascular development. Genes occupied and regulated by acRPB1 show significant enrichment for evolutionary origins in the early history of eukaryotes through early vertebrates. Our combined functional and evolutionary analyses show that RPB1 CTD acetylation was possible in the early history of animals, and that the K7 content of the CTD expanded in specific developmentally complex metazoan lineages. The functional analysis of genes regulated by acRPB1 highlight functions involved in the origin of and diversification of complex Metazoa. This suggests that acRPB1 may have played a role in the success of animals. We used a HA-tagged mouse RPB1 construct in which all K7 residues were substituted with arginines (8KR). This mutation resembles unacetylated lysines by conserving the positive charge at these positions, but preventing acetylation. To examine the potential functions of K7 acetylation in regulating gene expression, we stably expressed wildtype or 8KR HA-RPB1 in murine NIH/3T3 fibroblasts and cultured these cells in media containing α-amanitin. Both were expressed at equivalent levels, but acetylation was present only in wildtype, and not mutant HA-RPB1. We then performed gene expression profiling using the Affymetrix Mouse Gene 1.0 ST microarray with three biological replicates.
Project description:RPB1, the largest subunit of RNA polymerase II, contains a highly modifiable C-terminal domain (CTD) that consists of variations of a consensus heptad repeat sequence (Y1S2P3T4S5P6S7). The consensus CTD repeat motif and tandem organization represent the ancestral state of eukaryotic RPB1, but across eukaryotes CTDs show considerable diversity in repeat organization and sequence content. These differences may reflect lineage-specific CTD functions mediated by protein interactions. Mammalian CTDs contain eight non-consensus repeats with a lysine in the seventh position (K7). Posttranslational acetylation of these sites was recently shown to be required for proper polymerase pausing and regulation of two growth factor-regulated genes. To investigate the origins and function of RPB1 CTD acetylation (acRPB1), we computationally reconstructed the evolution of the CTD repeat sequence across eukaryotes and analyzed the evolution and function of genes dysregulated when acRPB1 is disrupted. Modeling the evolutionary dynamics of CTD repeat count and sequence content across diverse eukaryotes revealed an expansion of the CTD in the ancestors of Metazoa. The new CTD repeats introduced the potential for acRPB1 due to the appearance of distal repeats with lysine at position seven. This was followed by a further increase in the number of lysine-containing repeats in developmentally complex clades like Deuterostomia. Mouse genes enriched for acRPB1 occupancy at their promoters and genes with significant expression changes when acRPB1 is disrupted are enriched for several functions, such as growth factor response, gene regulation, cellular adhesion, and vascular development. Genes occupied and regulated by acRPB1 show significant enrichment for evolutionary origins in the early history of eukaryotes through early vertebrates. Our combined functional and evolutionary analyses show that RPB1 CTD acetylation was possible in the early history of animals, and that the K7 content of the CTD expanded in specific developmentally complex metazoan lineages. The functional analysis of genes regulated by acRPB1 highlight functions involved in the origin of and diversification of complex Metazoa. This suggests that acRPB1 may have played a role in the success of animals.
Project description:Transcription by RNA polymerase II (RNAPII) is coupled to mRNA processing and chromatin modifications via the C-terminal domain (CTD) of its largest subunit, consisting of multiple repeats of the heptapeptide YSPTSPS. Pioneering studies showed that CTD serines are differentially phosphorylated along genes in a prescribed pattern during the transcription cycle. Genome-wide analyses challenged this idea, suggesting that this cycle is non-uniform among different genes. Moreover, the respective role of enzymes responsible for CTD modifications remains controversial. Here, we systematically profiled the location of the RNAPII phospho-isoforms in wild type cells and mutants for most CTD modifying enzymes. Together with results of in vitro assays, these data reveal a complex interplay between the modifying enzymes, and provide evidence that the CTD cycle is uniform across genes. We also identify Ssu72 as the Ser7 phosphatase and show that proline isomerization is a key regulator of CTD dephosphorylation at the end of genes. We took a systematic approach to examine the genome-wide distribution of the various CTD modifications using a panel of RNAPII CTD phospho-specific antibodies; both in wild type cells and in mutants for most of the CTD kinases, phosphatases and the isomerase. Immunoprecipitation of CTD phospho-isoforms were done using the following antibodies: H14 and 3E8 for Ser5, H5 and 3E10 for Ser2, 4E12 for Ser7, 8WG16 (anti-Rpb1-CTD) and W0012 (anti-Rpb3) for RNAPII (global localization). A list of the mutant strains and their genotypes can be found in the supplemental files of the related publication. Most ChIPs (in Cy5) were hybridyzed against a non-immunoprecipitated (whole cell extract, WCE) in Cy3. Ssu72, Pti1 and Rpb1 were immunoprecipitated using tagged proteins (3myc-Ssu72, Pti1-3myc, Rpb1-9myc) and the ChIP DNA hybridized in competition with a control ChIP DNA prepared from an isogenic untagged strain (NoTag). ChIP from wild type strains yFR116 (W303) and yFR117 (S288C) were used to obtains wild type profiles that can be compared to mutants strains of the same background. All ChIP-chip experiments were done at least in duplicates. Each microarray was normalized using the Lima Loess and replicates were combined using a weighted average method as previously described (Pokholok et al., 2005).
Project description:Dynamic post-translational modification of RNA polymerase II (RNAPII) coordinates the co-transcriptional recruitment of enzymatic complexes that regulate chromatin states and co-transcriptional processing of nascent RNA. Extensive phosphorylation of serine residues occurs at the structurally-disordered C-terminal domain (CTD) of the largest RNAPII subunit, which is composed of multiple heptapeptide repeats with consensus sequence Y1-S2-P3-T4-S5-P6-S7. Serine-5 and Serine-7 phosphorylation mark transcription initiation, whereas Serine-2 phosphorylation coincides with productive elongation. In vertebrates, the CTD has eight non-canonical substitutions of Serine-7 into Lysine-7, which can be acetylated (K7ac). Here, we describe for the first time mono- and di-methylation of CTD Lysine-7 residues (K7me1 and K7me2). K7me1 and K7me2 are observed during the earliest transcription stages and precede or accompany Serine-5 and Serine-7 phosphorylation. Genome wide mapping of 2 novel RNAPII post-translational modifications (CTD-K7me1 and CTD-K7me2) in mouse ES cells.