IL-17A influences essential functions of the monocyte / macrophage lineage and is involved in advanced murine and human atherosclerosis
Ontology highlight
ABSTRACT: Atherosclerosis is a chronic inflammatory disease. Lesion progression is primarily mediated by cells of the monocyte/macrophage lineage. Interleukin-17A is a pro-inflammatory cytokine, which modulates immune cell trafficking and is involved inflammation in (auto)immune and infectious diseases. But the role of IL-17A still remains controversial. In the current study we investigated effects of IL-17A on advanced murine and human atherosclerosis, the common disease phenotype in clinical care. 26-weeks old apolipoprotein E-deficient (Apoe-/-) mice were fed a standard chow diet and treated either with IL-17A mAb (n=15) or irrelevant immunoglobulin (n=10) for 16 weeks. Furthermore, essential mechanisms of IL-17A in atherogenesis were studied in vitro. Inhibition of IL-17A markedly prevented atherosclerotic lesion progression (P=0.001) by reducing inflammatory burden and cellular infiltration (P=0.01) and improved lesion stability (P=0.01). In vitro experiments showed that IL-17A plays a role in chemoattractance, monocyte adhesion, sensitization of antigen-presenting cells toward pathogen-derived TLR4 ligands. Also, IL-17A induced a unique transcriptome pattern in monocyte-derived macrophages distinct from known macrophage types. Stimulation of human carotid plaque tissue ex vivo with IL-17A induced a pro-inflammatory milieu and up-regulation of molecules expressed by the IL-17A-induced macrophage subtype. We here show for the first time that functional blockade of IL-17A prevents atherosclerotic lesion progression and induces plaque stabilization in advanced lesions in Apoe-/- mice. The underlying mechanisms involve reduced inflammation and distinct effects of IL-17A on monocyte / macrophage lineage. In addition, translational experiments underline the relevance for the human system.
ORGANISM(S): Homo sapiens
PROVIDER: GSE60824 | GEO | 2014/10/01
SECONDARY ACCESSION(S): PRJNA259626
REPOSITORIES: GEO
ACCESS DATA