Project description:Resistance to androgen deprivation therapies and increased androgen receptor (AR) activity are major drivers of castration-resistant prostate cancer (CRPC). Although prior work has focused on targeting AR directly, co-activators of AR signaling, which may represent new therapeutic targets, are relatively underexplored. Here we demonstrate that the mixed-lineage leukemia protein (MLL) complex, a well-known driver of MLL fusion-positive leukemia, acts as a co-activator of AR signaling. AR directly interacts with the MLL complex via the menin-MLL subunit. Menin expression is higher in CRPC than in both hormone-naive prostate cancer and benign prostate tissue, and high menin expression correlates with poor overall survival of individuals diagnosed with prostate cancer. Treatment with a small-molecule inhibitor of menin-MLL interaction blocks AR signaling and inhibits the growth of castration-resistant tumors in vivo in mice. Taken together, this work identifies the MLL complex as a crucial co-activator of AR and a potential therapeutic target in advanced prostate cancer.
Project description:Resistance to androgen deprivation therapies and increased androgen receptor (AR) activity are major drivers of castration-resistant prostate cancer (CRPC). Prior work has focused on targeting AR directly; however, the identification and targeting of co-activators of AR signaling remains an underexplored area. Here we demonstrate that the MLL (mixed-lineage leukemia) complex, a well-known contributor in MLL-fusion-positive leukemia, acts as a co-activator of AR signaling. AR interacts with the MLL complex via its subunit, menin. Small molecule inhibition of the menin-MLL interaction blocks AR signaling and inhibits tumor growth in vivo. Furthermore, we find that menin is up-regulated in CRPC and high expression correlates with poor overall survival. Our study identifies the MLL complex as a co-activator of AR that can be targeted in advanced prostate cancer. ASH2L / Menin / MLL1 were knocked down using shRNA /siRNA in two prostate cancer cell lines, VCaP and LNCaP.
Project description:Men who develop metastatic castration-resistant prostate cancer (CRPC) invariably succumb to the disease. The development and progression to CRPC following androgen ablation therapy is predominantly driven by unregulated androgen receptor (AR) signaling. Despite the success of recently approved therapies targeting AR signaling, such as abiraterone and second-generation anti-androgens MDV3100 (enzalutamide), durable responses are limited, presumably due to acquired resistance. Recently, JQ1 and I-BET, two selective small molecule inhibitors that target the amino-terminal bromodomains of BRD4, have been shown to exhibit antiproliferative effects in a range of malignancies. Here we show that AR signaling-competent CRPC cell lines are preferentially sensitive to BET bromodomain inhibition. BRD4 physically interacts with the N-terminal domain of AR and can be disrupted by JQ1. Like the direct AR antagonist, MDV3100, JQ1 disrupted AR recruitment to target gene loci. In contrast to MDV3100, JQ1 functions downstream of AR, and more potently abrogated BRD4 localization to AR target loci and AR mediated gene transcription including induction of TMPRSS2-ERG and its oncogenic activity. In vivo, BET bromodomain inhibition was more efficacious than direct AR antagonism in CRPC xenograft models. Taken together, these studies provide a novel epigenetic approach for the concerted blockade of oncogenic drivers in advanced prostate cancer. Examination of ASH2L genome-wide binding in prostate cancer cells after AR stimulation.
Project description:Resistance to androgen deprivation therapies and increased androgen receptor (AR) activity are major drivers of castration-resistant prostate cancer (CRPC). Prior work has focused on targeting AR directly; however, the identification and targeting of co-activators of AR signaling remains an underexplored area. Here we demonstrate that the MLL (mixed-lineage leukemia) complex, a well-known contributor in MLL-fusion-positive leukemia, acts as a co-activator of AR signaling. AR interacts with the MLL complex via its subunit, menin. Small molecule inhibition of the menin-MLL interaction blocks AR signaling and inhibits tumor growth in vivo. Furthermore, we find that menin is up-regulated in CRPC and high expression correlates with poor overall survival. Our study identifies the MLL complex as a co-activator of AR that can be targeted in advanced prostate cancer.
Project description:Men who develop metastatic castration-resistant prostate cancer (CRPC) invariably succumb to the disease. The development and progression to CRPC following androgen ablation therapy is predominantly driven by unregulated androgen receptor (AR) signaling. Despite the success of recently approved therapies targeting AR signaling, such as abiraterone and second-generation anti-androgens MDV3100 (enzalutamide), durable responses are limited, presumably due to acquired resistance. Recently, JQ1 and I-BET, two selective small molecule inhibitors that target the amino-terminal bromodomains of BRD4, have been shown to exhibit antiproliferative effects in a range of malignancies. Here we show that AR signaling-competent CRPC cell lines are preferentially sensitive to BET bromodomain inhibition. BRD4 physically interacts with the N-terminal domain of AR and can be disrupted by JQ1. Like the direct AR antagonist, MDV3100, JQ1 disrupted AR recruitment to target gene loci. In contrast to MDV3100, JQ1 functions downstream of AR, and more potently abrogated BRD4 localization to AR target loci and AR mediated gene transcription including induction of TMPRSS2-ERG and its oncogenic activity. In vivo, BET bromodomain inhibition was more efficacious than direct AR antagonism in CRPC xenograft models. Taken together, these studies provide a novel epigenetic approach for the concerted blockade of oncogenic drivers in advanced prostate cancer.