Project description:The yeast mRNA export adaptor Yra1 binds the Pcf11 subunit of cleavage-polyadenylation factor CF1A linking export to 3'-end formation. We found a surprising consequence of this interaction is that Yra1 influences cleavage-polyadenylation. Yra1 competes with the CF1A subunit, Clp1, for binding to Pcf11, and excess Yra1 inhibits 3' processing in vitro. Release of Yra1 at the 3' ends of genes coincides with recruitment of Clp1, and depletion of Yra1 enhances Clp1 recruitment within some genes. These results suggest that CF1A is not necessarily recruited as a complete unit, but instead Clp1 can be incorporated co-transcriptionally in a process regulated by Yra1. Yra1 depletion causes widespread changes in poly(A) site choice particularly at sites where the efficiency element is divergently positioned. We propose that one way Yra1 modulates cleavage-polyadenylation is by influencing co-transcriptional assembly of the CF1A/B 3' processing factor. Key Words: Yra1, cleavage-polyadenylation, mRNA export, Pcf11, Clp1, Sub2, alternative polyadenylation mRNA poly (A) sites were mapped by sequencing 3' ends in WT and Yra1-depleted cells using a GAL1-YRA1 mutant. RNA seq of mRNA 3' ends using Illumina platform.
Project description:The yeast mRNA export adaptor Yra1 binds the Pcf11 subunit of cleavage-polyadenylation factor CF1A linking export to 3'-end formation. We found a surprising consequence of this interaction is that Yra1 influences cleavage-polyadenylation. Yra1 competes with the CF1A subunit, Clp1, for binding to Pcf11, and excess Yra1 inhibits 3' processing in vitro. Release of Yra1 at the 3' ends of genes coincides with recruitment of Clp1, and depletion of Yra1 enhances Clp1 recruitment within some genes. These results suggest that CF1A is not necessarily recruited as a complete unit, but instead Clp1 can be incorporated co-transcriptionally in a process regulated by Yra1. Yra1 depletion causes widespread changes in poly(A) site choice particularly at sites where the efficiency element is divergently positioned. We propose that one way Yra1 modulates cleavage-polyadenylation is by influencing co-transcriptional assembly of the CF1A/B 3' processing factor. Key Words: Yra1, cleavage-polyadenylation, mRNA export, Pcf11, Clp1, Sub2, alternative polyadenylation
Project description:The use of alternative polyadenylation sites is common and affects the post-transcriptional fate of mRNA, including its stability, localization, and translation. Here we present a method for genome-wide and strand-specific mapping of poly(A) sites and quantification of RNA levels at unprecedented efficiency by using an on-cluster dark T-fill procedure on the Illumina sequencing platform. Our method outperforms former protocols in quality and throughput, and reveals new insights into polyadenylation in Saccharomyces cerevisiae. Experimental benchmark of five different protocols (3tfill, bpmI, internal, rnaseq and yoon) for genome-wide identification of polyadenylation sites in Saccharomyces cerevisiae and transcript quantification. RNA was extracted from WT cells grown in glucose (ypd) or galactose (ypgal) as carbon source. The same RNA was used for 3 independent library constructions (technical replicates, rep).
Project description:The use of alternative polyadenylation sites is common and affects the post-transcriptional fate of mRNA, including its stability, localization, and translation. Here we present a method for genome-wide and strand-specific mapping of poly(A) sites and quantification of RNA levels at unprecedented efficiency by using an on-cluster dark T-fill procedure on the Illumina sequencing platform. Our method outperforms former protocols in quality and throughput, and reveals new insights into polyadenylation in Saccharomyces cerevisiae.
Project description:Polyadenylation of pre-mRNAs, a critical step in eukaryotic gene expression, is mediated by cis elements, collectively called the polyadenylation signal. Genome-wide analysis of such polyadenylation signals was missing in fission yeast, which is an important model organism. We demonstrate that the canonical AATAAA motif is the most frequent and functional polyadenylation signal in Schizosaccharomyces pombe. Using analysis of RNA-Seq datasets from cells grown under various physiological conditions, we identify 3' UTRs for nearly 90% of the yeast genes. Heterogeneity of cleavage sites is common, as well as alternative polyadenylation within and between conditions. We validated the computationally identified sequence elements likely to promote polyadenylation, by functional assays including qRT-PCR and 3'RACE analysis. The biological importance of the AATAAA motif is underlined by functional analysis of genes containing it. Furthermore, it has been shown that convergent genes require trans elements, like cohesin for efficient transcription termination. Here we show that convergent genes lacking cohesin are generally (on chromosome 2) associated with longer overlapping mRNA transcripts. Our bioinformatic and experimental genome-wide results are summarized and can be accessed and customized in a user-friendly database Pomb(A).
Project description:We conduct herein a systematic study of mRNA recognition and consequent polyadenylation processing of the Arabidopsis mRNA by m6A reader protein CPSF70. Transcriptome-wide characterization of CPSF70-binding sites supporting the recognition m6A-methylated mRNA with CPSF70, and the results of which linked polyadenylation signals recognition. We then perform 3’end sequencing with A-seq2 to identify CPSF70-dependent APA process, showing that CPSF70 modulate m6A–dependent polyadenylation with FUE recognition.
Project description:The use of alternative polyadenylation sites is common and affects the post-transcriptional fate of mRNA, including its stability, localization, and translation. Here we use the internal version of our previously developed protocol (PMID: 23295673), to characterize the polyA sites in a xrn1∆ strain.
Project description:Epigenetic modifications of chromatin serve an important role in regulating the expression and accessibility of genomic DNA. We report here a genomewide approach for fractionating yeast chromatin into two functionally distinct parts, one containing RNA polymerase II transcribed sequences, and the other comprising noncoding sequences and genes transcribed by RNA polymerases I and III. Noncoding regions could be further fractionated into promoters and segments lacking promoters. The observed separations were apparently based on differential crosslinking efficiency of chromatin in different genomic regions. The results reveal a genomewide molecular mechanism for marking promoters and genomic regions that have a license to be transcribed by RNA polymerase II, a previously unrecognized level of genomic complexity that may exist in all eukaryotes. Our approach has broad potential use as a tool for genome annotation and for the characterization of global changes in chromatin structure that accompany different genetic, environmental, and disease states. Keywords: Genomewide mapping of regulatory elements through differential fractionation of crosslinked chromatin based on nucleosome occupancy.
Project description:Epigenetic modifications of chromatin serve an important role in regulating the expression and accessibility of genomic DNA. We report here a genomewide approach for fractionating yeast chromatin into two functionally distinct parts, one containing RNA polymerase II transcribed sequences, and the other comprising noncoding sequences and genes transcribed by RNA polymerases I and III. Noncoding regions could be further fractionated into promoters and segments lacking promoters. The observed separations were apparently based on differential crosslinking efficiency of chromatin in different genomic regions. The results reveal a genomewide molecular mechanism for marking promoters and genomic regions that have a license to be transcribed by RNA polymerase II, a previously unrecognized level of genomic complexity that may exist in all eukaryotes. Our approach has broad potential use as a tool for genome annotation and for the characterization of global changes in chromatin structure that accompany different genetic, environmental, and disease states. Keywords: Genomewide mapping of regulatory elements through differential fractionation of crosslinked chromatin based on nucleosome occupancy.