Transcriptional analysis of a Vibrio choleare rpoH mutant vs wild-type after a heat-shock
Ontology highlight
ABSTRACT: Vibrio cholerae, the cause of cholera, can grow in a variety of environments outside of human hosts. During infection, the pathogen must adapt to significant environmental alterations, including the elevated temperature of the human gastrointestinal tract. σ32, an alternative sigma factor encoded by rpoH, activates transcription of genes involved in the heat-shock response in several bacterial species. We defined the V. cholerae RpoH regulon by comparing the whole genome transcription profiles of the wild-type and rpoH mutant strains after a temperature up-shift. Most of the V. cholerae genes expressed in an RpoH-dependent manner after heat-shock encode proteins that influence protein fate, such as proteases and chaperones, or are of unknown function. Keywords: heat-shock response, rpoH
ORGANISM(S): Vibrio cholerae O1 biovar El Tor str. N16961 Vibrio cholerae
Project description:Temperature is a crucial environmental signal that govers the occurrence of Vibrio cholerae and cholera outbreaks. To understand how temperature impacts the transcriptome of V. cholerae we performed whole-genome level transcriptional profiling using custom microarrays on cells grown at human body temperature (37 C) then shifted to temperatures V. cholerae experience in the environment (15 C and 25 C).
Project description:The bacterial heat-shock response is regulated by the alternative sigma factor sigma 32 (RpoH), which responds to misfolded protein stress and directs the RNA polymerase to the promoterss for genes required for protein refolding or degradation. In P. aeruginosa, RpoH is essential for viability under laboratory growth conditions. Here, we used a transcriptomics approach to identify the genes of the RpoH regulon, including RpoH-regulated genes that are essential for P. aeruginosa. We placed the rpoH gene under control of the arabinose inducible PBAD promoter, then deleted the chromosomal rpoH allele. This allowed transcriptomic analysis of the RpoH regulon following a short up-shift in the cellular concentration of RpoH by arabinose addition, in the absence of a sudden increase in temperature. The P. aeruginosa ∆rpoH (PBAD-rpoH) strain grew in the absence of arabinose, indicating that some rpoH expression occurs without arabinose-induction. When arabinose was added, the rpoH mRNA abundance of P. aeruginosa ∆rpoH (PBAD-rpoH) measured by RT-qPCR increased fivefold within 15 min of arabinose addition. Whole genome transcriptome results showed that P. aeruginosa genes required for protein repair or degradation are induced by increased RpoH levels, and that many of the genes induced by RpoH are essential for P. aeruginosa growth. Other stress response genes induced by RpoH are involved in nucleic acid damage and repair and in amino acid metabolism. Annotation of the hypothetical proteins under RpoH control included proteins that may play a role in antibiotic resistances and in non-ribosomal peptide synthesis. The P. aeruginosa ∆rpoH (PBAD-rpoH) strain is impaired in its ability to survive during starvation compared to the wild-type strain. P. aeruginosa ∆rpoH (PBAD-rpoH) also has increased sensitivity to aminoglycoside antibiotics, but not to other classes of antibiotics, whether cultured planktonically or in biofilms. The enhanced aminoglycoside resistance of the mutant strain may be due to indirect effects, such as the build-up of toxic misfolded proteins, or to the direct effect of genes such as aminoglycoside acetyl transferases that are regulated by RpoH. Overall, the results demonstrate that RpoH regulates genes that are essential for viability of P. aeruginosa, that it protects P. aeruginosa from damage from aminoglycoside antibiotics, and that it is required for survival during nutrient limiting conditions. We used Affymetrix microarrays to characterize the RpoH regulon in P. aeruginosa. Using the P. aeruginosa ∆rpoH strain with rpoH under control of the PBAD promoter, we were able to perform transcriptomic analysis of genes induced by a sudden increase (15 min) in the cellular concentration of RpoH, independent from a sudden increase in temperature.
Project description:Understanding gene expression by bacteria during the actual course of human infection may provide important insights into microbial pathogenesis. In this study, we evaluated the transcriptional profile of Vibrio cholerae, the causative agent of cholera, in clinical specimens from cholera patients. We collected samples of human stool and vomitus that were positive by dark-field microscopy for abundant vibrios and used a microarray to compare gene expression in organisms recovered directly from the early and late stages of human infection. Our results reveal that V. cholerae gene expression within the human host environment differs from patterns defined in in vitro models of pathogenesis. tcpA, the major subunit of the essential V. cholerae colonization factor, was significantly more highly expressed in early compared with late infection; however, the genes encoding cholera toxin were not highly expressed in either phase of human infection. Furthermore, expression of the virulence regulators, toxRS and tcpPH, was uncoupled. Interestingly, the pattern of gene expression indicates that the human upper intestine may be a uniquely suitable environment for the transfer of genetic elements that are important in the evolution of pathogenic strains of V. cholerae. These findings provide a more detailed assessment of the transcriptome of V. cholerae in the human host than previous studies of organisms in stool alone and have implications for cholera control and the design of improved vaccines. Keywords: comparative gene expression analysis
Project description:Pandemic and endemic strains of Vibrio cholerae arise from toxigenic conversion by the CTXφ bacteriophage, a process by which CTXφ infects non-toxigenic strains of V. cholerae. CTXφ encodes the cholera toxin, an enterotoxin responsible for the watery diarrhea associated with cholera infections. Despite the critical role of CTXφ during infections, signals that affect CTXφ-driven toxigenic conversion or expression of the CTXφ-encoded cholera toxin remain poorly characterized, particularly in the context of the gut mucosa. Here, we identify mucin polymers as potent regulators of CTXφ-driven pathogenicity in V. cholerae. Our results indicate that mucin-associated O-glycans block toxigenic conversion by CTXφ and suppress the expression of CTXφ-related virulence factors, including the toxin co-regulated pilus and cholera toxin, by interfering with the TcpP/ToxR/ToxT virulence pathway. By synthesizing individual mucin glycan structures de novo, we identify the Core 2 motif as the critical structure governing this virulence attenuation. Overall, our results highlight a novel mechanism by which mucins and their associated O-glycan structures affect CTXφ-mediated evolution and pathogenicity of V. cholerae, underscoring the potential regulatory power housed within mucus.
Project description:Sinorhizobium meliloti can live as a soil saprophyte, and can engage in a nitrogen fixing symbiosis with plant roots. To succeed in such diverse environments, the bacteria must continually adjust gene expression. Transcriptional plasticity in eubacteria is often mediated by alternative sigma factors interacting with core RNA polymerase. The S. meliloti genome encodes 14 of these alternative sigmas, including two putative RpoH (heat shock) sigmas. We used custom Affymetrix Symbiosis Chips to characterize the global transcriptional response of S. meliloti rpoH1, rpoH2 and rpoH1 rpoH2 mutants during heat shock and stationary phase growth. Under these conditions, expression of over 300 genes is dependent on rpoH1 and rpoH2.
Project description:Antibodies targeting the O-specific polysaccharide (OSP) of Vibrio cholerae O1 are a main determinant of protection against cholera. These antibodies can agglutinate bacteria, and can also directly inhibit V. cholerae motility, including at sub-agglutinating conditions. In order to evaluate for possible additional impacts of OSP-specific antibody on V. cholerae, we assessed the transcriptional profile of V. cholerae exposed to an anti-OSP human monoclonal antibody (G1), including in the presence of mucin, the principal component of intestinal mucous. We identified a subset of genes whose expression was significantly altered in the presence of anti-OSP antibody and mucin, including those involved in V. cholerae metabolism, transport, stress response, biofilm formation, motility, and secondary messenger signaling. Our results suggest a broad impact of anti-OSP antibodies on V. cholerae in the presence of mucin and identify several possible mechanisms by which anti-OSP antibodies might protect against cholera.
Project description:Sinorhizobium meliloti can live as a soil saprophyte, and can engage in a nitrogen fixing symbiosis with plant roots. To succeed in such diverse environments, the bacteria must continually adjust gene expression. Transcriptional plasticity in eubacteria is often mediated by alternative sigma factors interacting with core RNA polymerase. The S. meliloti genome encodes 14 of these alternative sigmas, including two putative RpoH (heat shock) sigmas. We used custom Affymetrix Symbiosis Chips to characterize the global transcriptional response of S. meliloti rpoH1, rpoH2 and rpoH1 rpoH2 mutants during heat shock and stationary phase growth. Under these conditions, expression of over 300 genes is dependent on rpoH1 and rpoH2. Gene expression profiling of Sinorhizobium meliloti Rm1021 and its isogenic rpoH1, rpoH2, and rpoH1rpoH2 mutants, subjected to heat shock or stationary phase growth, was performed using custom Affymetrix GeneChips
Project description:The heat shock response is critical for organisms to survive at a high temperature. Heterologous expression of eukaryotic molecular chaperons protects Escherichia coli against heat stress. Here we report that expression of the plant E3 ligase BnTR1 significantly increase the thermotolerance of Escherichia coli. Different from eukaryotic chaperones, BnTR1 post-transcriptionally regulates the heat shock factor σ32 though zinc fingers of the RING domain, which interacts with DnaK resulting in stabilizing σ32 and subsequently up-regulating heat shock proteins. Our findings indicate the expression of BnTR1 confers thermoprotective effects on E. coli cells, and it may provide useful clues to engineer thermophilic bacterial strains.
Project description:Bacteria use quorum sensing (QS) to monitor cell density and coordinate group behaviours. In Vibrio cholerae, the causative agent of cholera disease, QS is linked to virulence gene expression via the autoinducer molecules, AI-2 and CAI-1. Both autoinducers share one signal transduction pathway to control AphA production, a key transcriptional activator of virulence genes. In this study, we demonstrate that the recently identified autoinducer, DPO, also controls AphA production in V. cholerae. DPO acts through the transcriptional activator, VqmA, and the VqmR small RNA to reduce AphA levels at the post-transcriptional level. Consequently, DPO inhibits virulence gene expression in V. cholerae, including repression of the cholera toxin, a key factor required for disease in humans. VqmR-mediated repression of AphA links the AI-2/CAI-1 and DPO-dependent QS pathways of V. cholerae and global transcriptome analysis indicate that all three autoinducers are required for full QS function. Together, our data provide the first view on autoinducer interplay in V. cholerae and highlight the importance of post-transcriptional gene regulation for collective functions in this major human pathogen.
Project description:Understanding gene expression by bacteria during the actual course of human infection may provide important insights into microbial pathogenesis. In this study, we evaluated the transcriptional profile of Vibrio cholerae, the causative agent of cholera, in clinical specimens from cholera patients. We collected samples of human stool and vomitus that were positive by dark-field microscopy for abundant vibrios and used a microarray to compare gene expression in organisms recovered directly from the early and late stages of human infection. Our results reveal that V. cholerae gene expression within the human host environment differs from patterns defined in in vitro models of pathogenesis. tcpA, the major subunit of the essential V. cholerae colonization factor, was significantly more highly expressed in early compared with late infection; however, the genes encoding cholera toxin were not highly expressed in either phase of human infection. Furthermore, expression of the virulence regulators, toxRS and tcpPH, was uncoupled. Interestingly, the pattern of gene expression indicates that the human upper intestine may be a uniquely suitable environment for the transfer of genetic elements that are important in the evolution of pathogenic strains of V. cholerae. These findings provide a more detailed assessment of the transcriptome of V. cholerae in the human host than previous studies of organisms in stool alone and have implications for cholera control and the design of improved vaccines. The V. cholerae microarray consists of 3,890 full-length PCR products representing the annotated open reading frames from the initial release of the V. cholerae N16961 genome. Each labeling and hybridization was performed in duplicate. Genomic DNA was used as a universal internal control for the quality of the microarray and to allow for the comparison of results across multiple experiments. Data were normalized using locally-weighted regression (Lowess) to obtain the relative abundance of each transcript as an intensity ratio with respect to that of genomic DNA. High correlation coefficients were observed between technical replicates (Pearsonâs correlation coefficient (r) > 0.80) and between results of separate clinical specimens of vomitus (r > 0.77) and of stool (r > 0.80). Hence, the results from the two clinical vomitus specimens and the five clinical stool specimens were pooled. Fold changes for the relative expression of a given gene between the two clinical specimens were calculated by dividing the normalized median intensity ratios with respect to genomic DNA.