Methylation profiling

Dataset Information

0

Aberrant DNA methylation in rhabdomyosarcoma


ABSTRACT: Many pediatric malignancies are embryonal in nature, and one hypothesis for the origin of embryonal tumors is that they arise from a defect in differentiation, either by an inability to terminally differentiate or a reversion to a pluripotent state. There is emerging evidence that epigenetic regulation plays an important role in the transition from embryonic stem cell to a more committed cell fate, utilizing both de novo DNA methylation and poised ‘bivalent’ chromatin domains (H3K27me3 and H3K4me3) to abolish pluripotency and gain lineage- and cell-type-specific characteristics as a cell differentiates. Thus inappropriate epigenetic silencing by aberrant DNA methylation of bivalent genes required for differentiation could lead to the uncontrolled cell growth observed in cancer. Our broad hypothesis is that aberrant DNA methylation in cancer is targeted to a non-random subset of critical pathways used in normal development. This dysregulation of the normal epigenetic program used in development promotes cellular proliferation and provides a mechanism to block differentiation in pediatric cancers, such as rhabdomyosarcoma.

ORGANISM(S): Homo sapiens

PROVIDER: GSE61150 | GEO | 2014/10/22

SECONDARY ACCESSION(S): PRJNA260353

REPOSITORIES: GEO

Dataset's files

Source:
Action DRS
Other
Items per page:
1 - 1 of 1

Similar Datasets

2014-10-22 | E-GEOD-61150 | biostudies-arrayexpress
2011-01-31 | E-GEOD-20693 | biostudies-arrayexpress
2020-05-26 | PXD014981 | Pride
2011-01-31 | GSE20693 | GEO
2012-10-05 | E-GEOD-36350 | biostudies-arrayexpress
2011-02-01 | E-GEOD-26136 | biostudies-arrayexpress
2024-01-29 | GSE243528 | GEO
2007-10-26 | GSE4809 | GEO
2024-03-04 | GSE197569 | GEO
2012-10-05 | GSE36350 | GEO