Selective loss of 5hmC links to A-T Purkinje cell vulnerability
Ontology highlight
ABSTRACT: This SuperSeries is composed of the SubSeries listed below. The neurodegenerative disease known as ataxia-telangiectasia (A-T) is caused by the absence of the ATM (A-T mutated) protein. A long-standing mystery surrounding A-T is why cerebellar Purkinje cells (PCs) appear uniquely vulnerable to ATM-deficiency. Here, we present that 5-hydroxymethylcytosine (5hmC), a newly recognized epigenetic marker found at high levels in neurons, is substantially reduced in human A-T and Atm-/- mouse cerebellar PCs. TET1, an enzyme that converts 5mC to 5hmC, responds to DNA damage. Manipulation of TET1 activity directly affects neuronal cell cycle reentry and cell death after the induction of DNA damage. Quantitative, genome-wide analysis of 5hmC of samples from human cerebellum showed that in ATM-deficiency there is a remarkable genome-wide reduction of 5hmC enrichment at both proximal and distal regulatory elements. These results reveal a role of TET1-mediated 5hmC in DNA damage response, and provide insights into the basis of a PC-specific DNA demethylation alteration in ATM-deficiency.
ORGANISM(S): Homo sapiens
PROVIDER: GSE61169 | GEO | 2015/10/30
SECONDARY ACCESSION(S): PRJNA260387
REPOSITORIES: GEO
ACCESS DATA