Project description:Measurement of capping efficiency (by 5'CAP and 5'noCAP sequencing) in male (S2) and female (Kc) Drosophila melanogaster cells upon depletion of MSL1 by dsRNA compared to the eGFP RNAi control. The measurement of capping efficiency was combined with gene expression measurement by strand specific RNA-Seq in female (Kc) Drosophila melanogaster cells
Project description:Measurement of gene expression by strand specific RNA-Seq in male (S2) Drosophila melanogaster cells upon depletion of MSL1 by dsRNA compared to the eGFP RNAi control.
Project description:We present data using a novel method to simultaneously identify and quantify transferred male seminal proteins and the female reproductive proteome using multiplexed Tandem-Mass-Tag (TMT) isobaric labelling of the lower female reproductive tracts dissected from virgin- or recently mated- females of three species of the virilis group. We identified over 200 putative male ejaculate proteins many of which show differential abundance between species. We also identified over 2000 proteins providing the first description of the Drosophila female reproductive tract proteome outside of the melanogaster group which also shows significant divergence between species. We then assessed the utility of species-specific compared to single species query databases for protein identification and quantification.
Project description:ChIP-Seq profiles of MSL1, MSL2, MSl3, MOF, MLE, H4K16ac and RNA Polymerase II phosphorlyated on Serine 5 in Drosophila S2 cells MSL1, MSL2, MSL3, MOF, MLE, H4K16ac and RNA Polymerase II phosphorlyated on Serine 5 ChIP in Drosophila S2 cells. 1-3 biological replicates per experiment. Performed in single-read and paired-end read mode.
Project description:The male-specific lethal dosage compensation complex (MSL complex or DCC), which consists of five proteins and two non-coding roX RNAs, is necessary for the transcriptional enhancement of X-linked genes to compensate for the sex chromosome monosomy in Drosophila XY males, compared with XX females. MSL2 is a single protein component of the DCC that is expressed only in males and is essential for the specific recruitment of the DCC to the high-affinity “entry” sites (HASs) on the X chromosome. MSL2, together with MSL1, forms the heterotetrameric DCC core. Here, we demonstrated that the N-terminal unstructured region of MSL1 interacts with many different DNA-binding proteins that contain clusters of the C2H2 zinc-finger domains. Amino acid deletions in the N-terminal region of MSL1 strongly affect the binding of the DCC to the HASs on the male X chromosome. However, the binding of MSL2 to autosomal promoters was unaffected by amino acid deletions in MSL1. Males expressing mutant variants of MSL1 died during the larvae stage, demonstrating the critical role played by the N-terminal region in DCC activity. Our results suggest that MSL1 interacts with a variety of DNA-binding proteins to increase the specificity of DCC recruitment to the male X chromosome.