Neurons gradually attain a post-mitotic state
Ontology highlight
ABSTRACT: Once generated, neurons are thought to permanently exit the cell cycle and become irreversibly differentiated. However, neither the precise point at which this post-mitotic state is attained nor the extent of its irreversibility is clearly defined. Here we report that newly born neurons from the upper layers of the mouse cortex, despite initiating axon and dendrite elongation, continue to drive gene expression from the neurogenic intermediate neural progenitor tubulin ?1 promoter (T?1p). These observations suggest an ambiguous post-mitotic neuronal state. Whole transcriptome analysis of sorted upper cortical neurons further revealed that neurons continue to express genes related to cell cycle progression long after mitotic exit until at least post-natal day 3 (P3). These genes are however down regulated thereafter and are associated with a concomitant up regulation of tumor suppressors at P5. Interestingly, newly born neurons located in the cortical plate (CP) at embryonic day 18-19 (E18-E19) and P3 challenged with calcium influx are found in S/G2/M phases of the cell cycle, and still able to undergo division at E18-E19 but not at P3. At P5 however, calcium influx becomes neurotoxic and leads instead to neuronal loss. Our data delineate for the first time the temporal window during which developing neurons acquire a post-mitotic state.
ORGANISM(S): Mus musculus
PROVIDER: GSE61845 | GEO | 2014/09/29
SECONDARY ACCESSION(S): PRJNA262548
REPOSITORIES: GEO
ACCESS DATA