Project description:We have characterized the role of the Jmjd2/Kdm4 proteins in embryonic stem cell (ESC) biology, histone methylation and gene regulation. The Jmjd2 proteins are H3K9/H3K36 histone demethylases and three Jmjd2 family members are expressed in ESCs: Jmjd2a/Kdm4a, Jmjd2b/Kdm4b and Jmjd2c/Kdm4c/Gasc1. We find that specifically Jmjd2a and Jmjd2c exert redundant functions, which are essential for ESC self-renewal and early embryonic development. ChIP-seq studies show that Jmjd2a and Jmjd2c both localize to H3K4me3 marked regions, where they have general and widespread roles preventing the accumulation of especially H3K9me3, but also H3K36me3. Jmjd2 catalytic activity is required for ESC maintenance, and increased H3K9me3 levels in knockout ESCs compromise the expression of several Jmjd2a/c targets, including genes that are important for ESC self-renewal. Thus, continual removal of H3K9 promoter methylation by Jmjd2 demethylases represents a novel mechanism ensuring transcriptional competence and stability of the pluripotent cell identity.
Project description:We have characterized the role of the Jmjd2/Kdm4 proteins in embryonic stem cell (ESC) biology, histone methylation and gene regulation. The Jmjd2 proteins are H3K9/H3K36 histone demethylases and three Jmjd2 family members are expressed in ESCs: Jmjd2a/Kdm4a, Jmjd2b/Kdm4b and Jmjd2c/Kdm4c/Gasc1. We find that specifically Jmjd2a and Jmjd2c exert redundant functions, which are essential for ESC self-renewal and early embryonic development. ChIP-seq studies show that Jmjd2a and Jmjd2c both localize to H3K4me3 marked regions, where they have general and widespread roles preventing the accumulation of especially H3K9me3, but also H3K36me3. Jmjd2 catalytic activity is required for ESC maintenance, and increased H3K9me3 levels in knockout ESCs compromise the expression of several Jmjd2a/c targets, including genes that are important for ESC self-renewal. Thus, continual removal of H3K9 promoter methylation by Jmjd2 demethylases represents a novel mechanism ensuring transcriptional competence and stability of the pluripotent cell identity.
Project description:Jmjd2a and Jmjd2c regulate H3K9me3 and H3K36me3 at H3K4me3 positive transcription start sites being essential for ESC self-renewal and embryogenesis
Project description:The histone demethylase JMJD2C, also known as KDM4C/GASC1, has activity against methylated H3K9 and H3K36 and is amplified and/or overexpressed in human cancers. By the generation of Jmjd2c knockout mice, we demonstrate that loss of Jmjd2c is compatible with cellular proliferation, embryonic stem cell (ESC) self-renewal, and embryonic development. Moreover, we report that JMJD2C localizes to H3K4me3-positive transcription start sites in both primary cells and in the human carcinoma KYSE150 cell line containing an amplification of the JMJD2C locus. Binding is dependent on the double Tudor domain of JMJD2C, which recognizes H3K4me3 but not H4K20me2/me3 in vitro, showing a binding specificity different from that of the double Tudor domains of JMJD2A and JMJD2B. Depletion of JMJD2C in KYSE150 cells has a modest effect on H3K9me3 and H3K36me3 levels but impairs proliferation and leads to deregulated expression of a subset of target genes involved in cell cycle progression. Taking these findings together, we show that JMJD2C is targeted to H3K4me3-positive transcription start sites, where it can contribute to transcriptional regulation, and report that the putative oncogene JMJD2C generally is not required for cellular proliferation or embryonic development.
Project description:To elucidate the relationship between intragenic DNA methylation and chromatin marks, we performed epigenetic profiling of chromosome 19 in human bronchial epithelial cells (HBEC) and in the colorectal cancer cell line HCT116 as well as its counterpart with double knockout of DNMT1 and DNMT3B (HCT116-DKO). Analysis of H3K36me3 profiles indicated that this intragenic mark of active genes is associated with two categories of genes: (i) genes with low CpG density and H3K9me3 in the gene body or (ii) genes with high CpG density and DNA methylation in the gene body. We observed that a combination of low CpG density in gene bodies together with H3K9me3 and H3K36me3 occupancy is a specific epigenetic feature of zinc finger (ZNF) genes, which comprise 90% of all genes carrying both histone marks on chromosome 19. For genes with high intragenic CpG density, transcription and H3K36me3 occupancy were not changed in conditions of partial or intensive loss of DNA methylation in gene bodies. siRNA knockdown of SETD2, the major histone methyltransferase responsible for production of H3K36me3, did not reduce DNA methylation in gene bodies. Our study suggests that the H3K36me3 and DNA methylation marks in gene bodies are established largely independently of each other and points to similar functional roles of intragenic DNA methylation and intragenic H3K9me3 for CpG-rich and CpG-poor genes, respectively.
Project description:We have mapped binding sites for the histone demethylase, Jmjd2c/Kdm4c/Gasc1, in mouse embryonic fibroblasts (MEFs) and the impact of Jmjd2c depletion on H3K9me3 and H3K36me3 distributions.
Project description:We have mapped transcriptional changes after depletion of the histone demethylases JMJD2C/GASC1/KDM4C and JMJD2A/KDM4A alone or in combination in the esophageal squamous carcinoma cell line, KYSE150. The KYSE150 cell line contains an amplification of the JMJD2C locus.