Project description:SNPs affecting disease risk often reside in non-coding genomic regions. Here we show that SNPs are highly enriched at mouse strain-selective adipose tissue binding sites for PPARγ, a nuclear receptor for antidiabetic drugs. Many such SNPs alter binding motifs for PPARγ or cooperating factors, and functionally regulate nearby genes whose expression is strain-selective and imbalanced in heterozygous F1 mice. Moreover, genetically-determined binding of PPARγ accounts for mouse strain-specific transcriptional effects of TZD drugs, providing proof-of- concept for personalized medicine related to nuclear receptor genomic occupancy. In human fat, motif-altering SNPs cause differential PPARγ binding, provide a molecular mechanism for some expression quantitative trait loci, and are risk factors for dysmetabolic traits in genome- wide association studies. One PPARγ motif-altering SNP is associated with HDL levels and other metabolic syndrome parameters. Thus, natural genetic variation in PPARγ genomic occupancy determines individual disease risk and drug response. 6 ChIP-seq experiments conducted in mice and 5 in human subjects. Deep sequencing carried out using Illumina HiSeq2000 and the Solexa Analysis Pipeline eWAT; epididymal White Adipose Tissue iWAT; inguinal White Adipose Tissue 12wLFD; mice were fed a control low fat diet (Research Diet D12450B) chow; mice were fed standard rodent chow Diet GR; Glucocorticoid receptor
Project description:SNPs affecting disease risk often reside in non-coding genomic regions. Here we show that SNPs are highly enriched at mouse strain-selective adipose tissue binding sites for PPARγ, a nuclear receptor for antidiabetic drugs. Many such SNPs alter binding motifs for PPARγ or cooperating factors, and functionally regulate nearby genes whose expression is strain-selective and imbalanced in heterozygous F1 mice. Moreover, genetically-determined binding of PPARγ accounts for mouse strain-specific transcriptional effects of TZD drugs, providing proof-of- concept for personalized medicine related to nuclear receptor genomic occupancy. In human fat, motif-altering SNPs cause differential PPARγ binding, provide a molecular mechanism for some expression quantitative trait loci, and are risk factors for dysmetabolic traits in genome- wide association studies. One PPARγ motif-altering SNP is associated with HDL levels and other metabolic syndrome parameters. Thus, natural genetic variation in PPARγ genomic occupancy determines individual disease risk and drug response. Comparison of 5 RNA-seq experiments between 2 strains of mice differing in diet and fat depot. One of the experiments was evaluation of the response to a drug Rosiglitazone. Our RNA-seq data comprises primarily of 4 main experiments: The first experiment consists of samples taken from 2 strains of mice and their F1 progeny The samples are all taken from the same depot and when the mice were fed the same chow diet The second experiment has 2 parts, the first one involves samples taken from the 2 strains from the same eWAT depot when they were kept on a Low Fat Diet (LFD) This first part serves as a control for the second one in which the mice were treated with a drug, rosiglitazone in conjunction with a LFD The third experiment consists of samples taken from mice being fed on LFD. The samples are taken from the eWAT depot for both the strains. The fourth experiment consists of samples taken from mice being fed on LFD. The samples are taken from the iWAT depot for both the strains. We also have a solitary sample from a GRO-seq experiment which was done on eWAT in a B6 strain of mice being fed a LFD eWAT: epididymal White Adipose Tissue iWAT: inguinal White Adipose Tissue LFD-12w: mice were fed a control low fat diet (Research Diet D12450B) chow: mice were fed standard rodent chow Diet LFD w/rosiglitazone: Drug rosiglitazone (Cayman Chemicals) was incorporated into low fat diet D12450B by Research Diets at 36mg/kg of diet. Mice received control low fat diet for 10 weeks (age 6-16 weeks), and the rosiglitazone-containing diet versus control diet for the final 2 weeks (until sacrifice at 18 weeks) LFD control for rosi: mice were fed a control low fat diet (Research Diet D12450B)
Project description:SNPs affecting disease risk often reside in non-coding genomic regions. Here we show that SNPs are highly enriched at mouse strain-selective adipose tissue binding sites for PPARγ, a nuclear receptor for antidiabetic drugs. Many such SNPs alter binding motifs for PPARγ or cooperating factors, and functionally regulate nearby genes whose expression is strain-selective and imbalanced in heterozygous F1 mice. Moreover, genetically-determined binding of PPARγ accounts for mouse strain-specific transcriptional effects of TZD drugs, providing proof-of- concept for personalized medicine related to nuclear receptor genomic occupancy. In human fat, motif-altering SNPs cause differential PPARγ binding, provide a molecular mechanism for some expression quantitative trait loci, and are risk factors for dysmetabolic traits in genome- wide association studies. One PPARγ motif-altering SNP is associated with HDL levels and other metabolic syndrome parameters. Thus, natural genetic variation in PPARγ genomic occupancy determines individual disease risk and drug response.
Project description:SNPs affecting disease risk often reside in non-coding genomic regions. Here we show that SNPs are highly enriched at mouse strain-selective adipose tissue binding sites for PPARγ, a nuclear receptor for antidiabetic drugs. Many such SNPs alter binding motifs for PPARγ or cooperating factors, and functionally regulate nearby genes whose expression is strain-selective and imbalanced in heterozygous F1 mice. Moreover, genetically-determined binding of PPARγ accounts for mouse strain-specific transcriptional effects of TZD drugs, providing proof-of- concept for personalized medicine related to nuclear receptor genomic occupancy. In human fat, motif-altering SNPs cause differential PPARγ binding, provide a molecular mechanism for some expression quantitative trait loci, and are risk factors for dysmetabolic traits in genome- wide association studies. One PPARγ motif-altering SNP is associated with HDL levels and other metabolic syndrome parameters. Thus, natural genetic variation in PPARγ genomic occupancy determines individual disease risk and drug response.
Project description:SNPs affecting disease risk often reside in non-coding genomic regions. Here, we show that SNPs are highly enriched at mouse strain-selective adipose tissue binding sites for PPARγ, a nuclear receptor for anti-diabetic drugs. Many such SNPs alter binding motifs for PPARγ or cooperating factors and functionally regulate nearby genes whose expression is strain selective and imbalanced in heterozygous F1 mice. Moreover, genetically determined binding of PPARγ accounts for mouse strain-specific transcriptional effects of TZD drugs, providing proof of concept for personalized medicine related to nuclear receptor genomic occupancy. In human fat, motif-altering SNPs cause differential PPARγ binding, provide a molecular mechanism for some expression quantitative trait loci, and are risk factors for dysmetabolic traits in genome-wide association studies. One PPARγ motif-altering SNP is associated with HDL levels and other metabolic syndrome parameters. Thus, natural genetic variation in PPARγ genomic occupancy determines individual disease risk and drug response.
Project description:Thiazolidinedione drugs (TZDs) target the transcriptional activity of peroxisome proliferator activated receptor γ (PPARγ) to reverse insulin resistance in type 2 diabetes, but side effects limit their clinical use. Here, using human adipose stem cell-derived adipocytes, we demonstrate that SNPs were enriched at sites of patient-specific PPARγ binding, which correlated with the individual-specific effects of the TZD rosiglitazone (rosi) on gene expression. Rosi induction of ABCA1, which regulates cholesterol metabolism, was dependent upon SNP rs4743771, which modulated PPARγ binding by influencing the genomic occupancy of its cooperating factor, NFIA. Conversion of rs4743771 from the inactive SNP allele to the active one by clustered regularly interspaced short palindromic repeats (CRISPR)/Cas9-mediated editing rescued PPARγ binding and rosi induction of ABCA1 expression. Moreover, rs4743771 is a major determinant of undesired serum cholesterol increases in rosi-treated diabetics. These data highlight human genetic variation that impacts PPARγ genomic occupancy and patient responses to antidiabetic drugs, with implications for developing personalized therapies for metabolic disorders.
Project description:BackgroundCatecholamines govern stress blood pressure responses. Catecholaminergic responses may be partially genetic and contribute to the complex heritability of hypertension.Methods and resultsTo evaluate catecholaminergic responses without systemic counterregulation, we infused graded concentrations of tyramine, an indirect presynaptic norepinephrine releaser, into dorsal hand veins of 49 normotensive men and women of 5 ethnicities. Vascular responses were coupled to common (minor allele frequency >10%) single-nucleotide polymorphisms at adrenergic target loci within presynaptic pathways. Significance was set at P<0.003 after Bonferroni correction. Generalized analysis of molecular variance (GAMOVA) was performed to determine whether genetic admixture contributed to results. Venoconstriction progressed to 47% with increasing concentrations of tyramine (0.129 to 25.8 mmol/L; P<0.001). Family history of hypertension (P<0.001) and female sex (P=0.02) predicted blunted tyramine responses. Two genetic loci significantly predicted vascular response: chromogranin B, which encodes a protein that catalyzes catecholamine vesicle formation (CHGB, exon 4, Glu348Glu; P=0.002), and cytochrome b-561 (CYB561, intron 1, C719G; P<0.001), an electron shuttle for catecholamine synthesis. Stepwise regression suggested important effects for the CHGB locus, with polymorphisms for the vacuolar-ATPase beta-subunit (ATP6V1B1, exon 1, Ile30Thr) and flavin-containing monooxygenase-3 (FMO3, exon 3, Lys158Glu, P=0.002). GAMOVA did not show a significant relationship between overall genetic profile and hand-vein constriction (P=0.29), which indicates that population stratification did not contribute to this phenotype.ConclusionsLocally infused tyramine produced dose-dependent pressor responses, predicted by family history of hypertension, sex, and genetic variants at loci, particularly CHGB, that encode the biosynthesis, storage, and metabolism of catecholamines. Such variants may influence the complex heritability of adrenergic responses and perhaps hypertension.