Immortalized Human Hepatocyte (IHH) transcriptome response to wild-type Ebola viruses Zaire Ebola (ZEBOV '76) and Reston Ebola (REBOV '08)
Ontology highlight
ABSTRACT: The purpose of this experiment was to obtain samples for transcriptome analysis using wild-type viruses: Zaire Ebola (ZEBOV '76) and Reston Ebola (REBOV '08).
Project description:The purpose of this experiment was to obtain samples for transcriptome analysis using wild-type viruses: Zaire Ebola (ZEBOV '76) and Reston Ebola (REBOV '08). Overview of Experiment: Cells: Immortalized Human Hepatocytes (IHH); seed 60,000 cells per well in a 24-well plate. Infected with a multiplicity of infection (MOI) of 0.5. After infection, 3x wash with PBS and replace with 5% FCS DMEM without NaPyr or NEAA. Time matched mocks done in triplicate from same cell stock as rest of samples. Time Points = 0, 8, 24, 48, and 72 hrs post infection in triplicate. (For miRNA: 8, 24, 48, 72 hours.)
Project description:The purpose of this experiment was to obtain samples for mRNA analysis in IHH cells infected with Zaire Ebola virus and mutants: Zaire Ebola virus: This wild-type Ebola virus - strain Mayinga - was isolated from a fatal human case in Zaire (now known as the Democratic Republic of Congo) in 1976 Zaire Ebola virus, VP35 R312A possesses a R312A mutation in the VP35 protein. Zaire Ebola virus, delta sGP. Lacks the ability to produce non-structural protein, the secreted glycoprotein (sGP). Zaire Ebola virus, delta mucin. Lacks the mucin-like domain (MLD), which contains both N-linked and O-linked glycosylation sites, for the glycoproteins.
Project description:The purpose of this experiment was to obtain samples for mRNA analysis in IHH cells infected with Zaire Ebola virus and mutants: Zaire Ebola virus: This wild-type Ebola virus - strain Mayinga - was isolated from a fatal human case in Zaire (now known as the Democratic Republic of Congo) in 1976 Zaire Ebola virus, VP35 R312A possesses a R312A mutation in the VP35 protein. Zaire Ebola virus, delta sGP. Lacks the ability to produce non-structural protein, the secreted glycoprotein (sGP). Zaire Ebola virus, delta mucin. Lacks the mucin-like domain (MLD), which contains both N-linked and O-linked glycosylation sites, for the glycoproteins.
Project description:The purpose of this experiment was to obtain samples for mRNA analysis in IHH cells infected with Zaire Ebola virus and mutants: Zaire Ebola virus: This wild-type Ebola virus - strain Mayinga - was isolated from a fatal human case in Zaire (now known as the Democratic Republic of Congo) in 1976 Zaire Ebola virus, VP35 R312A possesses a R312A mutation in the VP35 protein. Zaire Ebola virus, delta sGP. Lacks the ability to produce non-structural protein, the secreted glycoprotein (sGP). Zaire Ebola virus, delta mucin. Lacks the mucin-like domain (MLD), which contains both N-linked and O-linked glycosylation sites, for the glycoproteins. Overview of Experiment: Cells: Immortalized Human Hepatocytes (IHH); seed 60,000 cells per well in a 24-well plate. Infected with a multiplicity of infection (MOI) of 0.5. After infection, 3x wash with PBS and replace with 5% FCS DMEM without NaPyr or NEAA. Time matched mocks done in triplicate from same cell stock as rest of samples. Time Points = 0, 6, 12, 24, 48, and 72 hrs post infection in triplicate.
Project description:The purpose of this experiment was to obtain samples for mRNA analysis in IHH cells infected with Zaire Ebola virus and mutants: Zaire Ebola virus: This wild-type Ebola virus - strain Mayinga - was isolated from a fatal human case in Zaire (now known as the Democratic Republic of Congo) in 1976 Zaire Ebola virus, VP35 R312A possesses a R312A mutation in the VP35 protein. Zaire Ebola virus, delta sGP. Lacks the ability to produce non-structural protein, the secreted glycoprotein (sGP). Zaire Ebola virus, delta mucin. Lacks the mucin-like domain (MLD), which contains both N-linked and O-linked glycosylation sites, for the glycoproteins. Overview of Experiment: Cells: Immortalized Human Hepatocytes (IHH); seed 60,000 cells per well in a 24-well plate. Infected with a multiplicity of infection (MOI) of 0.5. After infection, 3x wash with PBS and replace with 5% FCS DMEM without NaPyr or NEAA. Time matched mocks done in triplicate from same cell stock as rest of samples. Time Points = 0, 6, 12, 24, 48, and 72 hrs post infection in triplicate.
Project description:Zaire ebolavirus (ZEBOV) infections are associated with high lethality in primates. ZEBOV primarily targets mononuclear phagocytes, which are activated upon infection and secrete mediators believed to trigger initial stages of pathogenesis. The characterization of the responses of target cells to ZEBOV infection may therefore not only further understanding of pathogenesis but also suggest possible points of therapeutic intervention. Gene expression profiles of primary human macrophages exposed to ZEBOV were determined using DNA microarrays and quantitative PCR to gain insight into the cellular response immediately after cell entry. Significant changes in mRNA concentrations encoding for 88 cellular proteins were observed. Most of these proteins have not yet been implicated in ZEBOV infection. Some, however, are inflammatory mediators known to be elevated during the acute phase of disease in the blood of ZEBOV-infected humans. Interestingly, the cellular response occurred within the first hour of Ebola virion exposure, i.e. prior to virus gene expression. This observation supports the hypothesis that virion binding or entry mediated by the spike glycoprotein (GP1,2) is the primary stimulus for an initial response. Indeed, ZEBOV virions, LPS, and virus-like particles consisting of only the ZEBOV matrix protein VP40 and GP1,2 (VLPVP40-GP) triggered comparable responses in macrophages, including pro-inflammatory and pro-apoptotic signals. In contrast, VLPVP40 (particles lacking GP1,2) caused an aberrant response. Notably, some cellular interferon-inducible genes were upregulated six hours after exposure to virions and LPS, but not after exposure to VLPVP40-GP. This suggests that GP1,2 binding to macrophages plays an important role in the immediate cellular response. Primary human macrophages from three donors (D1, D2, D3) were harvested at 1 h and 6 h after in vitro exposure to purified Ebola virions and compared to RNA from mock-exposed cells derived from the same donors.
Project description:The purpose is to obtain samples for mRNA analysis in human U937 cells infected with Zaire Ebola virus wild-type in the deltaVP30 background and delta-mucin virus. Human U937 cells (monocyte-like) expressing the Ebola VP30 protein were infected with Zaire Ebola virus wild-type (wild) in the delta-VP30 background and delta-mucin virus (encodes a GP lacking the mucin domain) (mucin). Infected samples were collected in quintuplet; time-matched mocks were collected in quintuplet in parallel with infected samples. Time points: 0, 8, 18, and 30 h post-infection.
Project description:We characterized the intracellular miRNAs, isolated from whole blood cells (WB), induced by vaccination against Ebola. We identified early miRNA signatures associated with the ZEBOV-specific IgG antibody responses at day 28 or 360 post-vaccination.
Project description:We characterized the extracellular miRNAs, isolated from serum-derived extracellular vesicles (EV), induced by vaccination against Ebola. We identified early miRNA signatures associated with the ZEBOV-specific IgG antibody responses at day 28 or 360 post-vaccination.
Project description:The purpose is to obtain samples for microRNA analysis in Huh (human hepatocyte) cells infected with wild type Ebola Zaire (delta-VP30).