Whole cell mRNA expression profiling in control and complex I deficient patient fibroblasts incubated with DMSO, AICAR, chloramphenicol, and resveratrol
Ontology highlight
ABSTRACT: Background: Transcription control of mitochondrial metabolism is essential for cellular function. A better understanding of this process will aid the elucidation of mitochondrial disorders, in particular of the many genetically unsolved cases of oxidative phosphorylation (OXPHOS) deficiency. Yet, to date only few studies have investigated nuclear gene regulation in the context of OXPHOS deficiency. In this study, we combined RNA sequencing of human complex I-deficient patient cells across 32 conditions of perturbed mitochondrial metabolism, with a comprehensive analysis of gene expression patterns, co-expression calculations and transcription factor binding sites. Results: Our analysis shows that OXPHOS genes have a significantly higher co-expression with each other than with other genes, including mitochondrial genes. We found no evidence for complex-specific mRNA expression regulation in the tested cell types and conditions: subunits of different OXPHOS complexes are similarly (co-)expressed and regulated by a common set of transcription factors. However, we did observe significant differences between the expression of OXPHOS complex subunits compared to assembly factors, suggesting divergent transcription programs. Furthermore, complex I co-expression calculations identified 684 genes with a likely role in OXPHOS biogenesis and function. Analysis of evolutionarily conserved transcription factor binding sites in the promoters of these genes revealed almost all known OXPHOS regulators (including GABP, NRF1/2, SP1, YY1, E-box factors) and a set of six yet uncharacterized candidate transcription factors (ELK1, KLF7, SP4, EHF, ZNF143, and EL2). Conclusions: OXPHOS genes share an expression program distinct from other mitochondrial genes, indicative of targeted regulation of this mitochondrial sub-process. Within the subset of OXPHOS genes we established a difference in expression between subunits and assembly factors. Most transcription regulators of genes that co-express with complex I are well-established factors for OXPHOS biogenesis. For the remaining six factors we here suggest for the first time a link with transcription regulation in OXPHOS deficiency.
ORGANISM(S): Homo sapiens
PROVIDER: GSE65634 | GEO | 2015/08/31
SECONDARY ACCESSION(S): PRJNA274569
REPOSITORIES: GEO
ACCESS DATA