MeCP2 binds to mCH as neurons mature, influencing transcription and onset of Rett syndrome [mRNA-Seq]
Ontology highlight
ABSTRACT: The postnatal neurodevelopmental disorder Rett syndrome (RTT) is caused by mutations in the gene encoding Methyl-CpG-binding Protein 2 (MeCP2). Despite decades of research, it remains unclear how MeCP2 actually regulates transcription or why RTT features appear only 6-18 months after birth. We examined MeCP2 binding to methylated cytosine in the CH context (mCH, where H = A, C, or T) in the adult mouse brain and found that MeCP2 binds these mCH sites, influencing nucleosome positioning and transcription. Strikingly, this pattern is unique to the mature nervous system, as it requires the increase in mCH after birth to reveal differences in MeCP2 binding to mCG, mCH, and non-methylated DNA elements. This study provides insight into the molecular mechanism governing MeCP2 targeting and how this targeting might contribute to the delayed onset of RTT symptoms.
Project description:The postnatal neurodevelopmental disorder Rett syndrome (RTT) is caused by mutations in the gene encoding Methyl-CpG-binding Protein 2 (MeCP2). Despite decades of research, it remains unclear how MeCP2 actually regulates transcription or why RTT features appear only 6-18 months after birth. We examined MeCP2 binding to methylated cytosine in the CH context (mCH, where H = A, C, or T) in the adult mouse brain and found that MeCP2 binds these mCH sites, influencing nucleosome positioning and transcription. Strikingly, this pattern is unique to the mature nervous system, as it requires the increase in mCH after birth to reveal differences in MeCP2 binding to mCG, mCH, and non-methylated DNA elements. This study provides insight into the molecular mechanism governing MeCP2 targeting and how this targeting might contribute to the delayed onset of RTT symptoms. MeCP2 ChIP-Seq were conducted from ~ 7-week-old hypothalamus tissues from Mecp2-/y; MECP2-EGFP mice.
Project description:The postnatal neurodevelopmental disorder Rett syndrome (RTT) is caused by mutations in the gene encoding Methyl-CpG-binding Protein 2 (MeCP2). Despite decades of research, it remains unclear how MeCP2 actually regulates transcription or why RTT features appear only 6-18 months after birth. We examined MeCP2 binding to methylated cytosine in the CH context (mCH, where H = A, C, or T) in the adult mouse brain and found that MeCP2 binds these mCH sites, influencing nucleosome positioning and transcription. Strikingly, this pattern is unique to the mature nervous system, as it requires the increase in mCH after birth to reveal differences in MeCP2 binding to mCG, mCH, and non-methylated DNA elements. This study provides insight into the molecular mechanism governing MeCP2 targeting and how this targeting might contribute to the delayed onset of RTT symptoms. Mnase-Seq were conducted from 7-week-old hypothalamus from MeCP2 knockout mice and their age and genetic background matched wild types control mice.
Project description:The postnatal neurodevelopmental disorder Rett syndrome (RTT) is caused by mutations in the gene encoding Methyl-CpG-binding Protein 2 (MeCP2). Despite decades of research, it remains unclear how MeCP2 actually regulates transcription or why RTT features appear only 6-18 months after birth. We examined MeCP2 binding to methylated cytosine in the CH context (mCH, where H = A, C, or T) in the adult mouse brain and found that MeCP2 binds these mCH sites, influencing nucleosome positioning and transcription. Strikingly, this pattern is unique to the mature nervous system, as it requires the increase in mCH after birth to reveal differences in MeCP2 binding to mCG, mCH, and non-methylated DNA elements. This study provides insight into the molecular mechanism governing MeCP2 targeting and how this targeting might contribute to the delayed onset of RTT symptoms.
Project description:The postnatal neurodevelopmental disorder Rett syndrome (RTT) is caused by mutations in the gene encoding Methyl-CpG-binding Protein 2 (MeCP2). Despite decades of research, it remains unclear how MeCP2 actually regulates transcription or why RTT features appear only 6-18 months after birth. We examined MeCP2 binding to methylated cytosine in the CH context (mCH, where H = A, C, or T) in the adult mouse brain and found that MeCP2 binds these mCH sites, influencing nucleosome positioning and transcription. Strikingly, this pattern is unique to the mature nervous system, as it requires the increase in mCH after birth to reveal differences in MeCP2 binding to mCG, mCH, and non-methylated DNA elements. This study provides insight into the molecular mechanism governing MeCP2 targeting and how this targeting might contribute to the delayed onset of RTT symptoms.
Project description:The postnatal neurodevelopmental disorder Rett syndrome (RTT) is caused by mutations in the gene encoding Methyl-CpG-binding Protein 2 (MeCP2). Despite decades of research, it remains unclear how MeCP2 actually regulates transcription or why RTT features appear only 6-18 months after birth. We examined MeCP2 binding to methylated cytosine in the CH context (mCH, where H = A, C, or T) in the adult mouse brain and found that MeCP2 binds these mCH sites, influencing nucleosome positioning and transcription. Strikingly, this pattern is unique to the mature nervous system, as it requires the increase in mCH after birth to reveal differences in MeCP2 binding to mCG, mCH, and non-methylated DNA elements. This study provides insight into the molecular mechanism governing MeCP2 targeting and how this targeting might contribute to the delayed onset of RTT symptoms. mRNA-Seq were conducted from 7-week-old hypothalamus from MeCP2 knockout mice and their age and genetic background matched wild types control mice. Additonal mRNA-Seq were conducted from 7-week-old hypothalamus from MeCP2 transgenic mice and their age and genetic background matched wild types control mice.
Project description:Disruption of the MECP2 gene leads to Rett syndrome (RTT), a severe neurological disorder with features of autism. MECP2 encodes a methyl-DNA-binding protein that is proposed to function as a transcriptional repressor, but, despite numerous studies examining neuronal gene expression in MeCP2 mutants, no coherent model has emerged for how MeCP2 regulates transcription. Here we identify a genome-wide length-dependent increase in the expression of long genes in neurons lacking MeCP2. This gene misregulation occurs in human RTT brains and correlates with onset and severity of phenotypes in Mecp2 mutant mice, suggesting that the disruption of long gene expression contributes to RTT pathology. We present evidence that MeCP2 represses long genes by binding to brain-enriched, methylated CA dinucleotides within genes and show that loss of methylated CA in the brain recapitulates gene expression defects observed in MeCP2 mutants. We find that long genes encode proteins with neuronal functions, and overlap substantially with genes that have been implicated in autism and Fragile X syndrome. Reversing the overexpression of long genes in neurons lacking MeCP2 can improve some RTT-associated cellular deficits. These findings suggest that a function of MeCP2 in the mammalian brain is to temper the expression of genes in a length-dependent manner, and that mutations in MeCP2 and possibly other autism genes may cause neurological dysfunction by disrupting the expression of long genes in the brain. MeCP2 ChIP-seq from the forebrain and cerebellum of wild-type mice.
Project description:Disruption of the MECP2 gene leads to Rett syndrome (RTT), a severe neurological disorder with features of autism. MECP2 encodes a methyl-DNA-binding protein that is proposed to function as a transcriptional repressor, but, despite numerous studies examining neuronal gene expression in MeCP2 mutants, no coherent model has emerged for how MeCP2 regulates transcription. Here we identify a genome-wide length-dependent increase in the expression of long genes in neurons lacking MeCP2. This gene misregulation occurs in human RTT brains and correlates with onset and severity of phenotypes in Mecp2 mutant mice, suggesting that the disruption of long gene expression contributes to RTT pathology. We present evidence that MeCP2 represses long genes by binding to brain-enriched, methylated CA dinucleotides within genes and show that loss of methylated CA in the brain recapitulates gene expression defects observed in MeCP2 mutants. We find that long genes encode proteins with neuronal functions, and overlap substantially with genes that have been implicated in autism and Fragile X syndrome. Reversing the overexpression of long genes in neurons lacking MeCP2 can improve some RTT-associated cellular deficits. These findings suggest that a function of MeCP2 in the mammalian brain is to temper the expression of genes in a length-dependent manner, and that mutations in MeCP2 and possibly other autism genes may cause neurological dysfunction by disrupting the expression of long genes in the brain. Bisulfite-seq from mouse cortex and cerebellum
Project description:Disruption of the MECP2 gene leads to Rett syndrome (RTT), a severe neurological disorder with features of autism. MECP2 encodes a methyl-DNA-binding protein that is proposed to function as a transcriptional repressor, but, despite numerous studies examining neuronal gene expression in MeCP2 mutants, no coherent model has emerged for how MeCP2 regulates transcription. Here we identify a genome-wide length-dependent increase in the expression of long genes in neurons lacking MeCP2. This gene misregulation occurs in human RTT brains and correlates with onset and severity of phenotypes in Mecp2 mutant mice, suggesting that the disruption of long gene expression contributes to RTT pathology. We present evidence that MeCP2 represses long genes by binding to brain-enriched, methylated CA dinucleotides within genes and show that loss of methylated CA in the brain recapitulates gene expression defects observed in MeCP2 mutants. We find that long genes encode proteins with neuronal functions, and overlap substantially with genes that have been implicated in autism and Fragile X syndrome. Reversing the overexpression of long genes in neurons lacking MeCP2 can improve some RTT-associated cellular deficits. These findings suggest that a function of MeCP2 in the mammalian brain is to temper the expression of genes in a length-dependent manner, and that mutations in MeCP2 and possibly other autism genes may cause neurological dysfunction by disrupting the expression of long genes in the brain.
Project description:Disruption of the MECP2 gene leads to Rett syndrome (RTT), a severe neurological disorder with features of autism. MECP2 encodes a methyl-DNA-binding protein that is proposed to function as a transcriptional repressor, but, despite numerous studies examining neuronal gene expression in MeCP2 mutants, no coherent model has emerged for how MeCP2 regulates transcription. Here we identify a genome-wide length-dependent increase in the expression of long genes in neurons lacking MeCP2. This gene misregulation occurs in human RTT brains and correlates with onset and severity of phenotypes in Mecp2 mutant mice, suggesting that the disruption of long gene expression contributes to RTT pathology. We present evidence that MeCP2 represses long genes by binding to brain-enriched, methylated CA dinucleotides within genes and show that loss of methylated CA in the brain recapitulates gene expression defects observed in MeCP2 mutants. We find that long genes encode proteins with neuronal functions, and overlap substantially with genes that have been implicated in autism and Fragile X syndrome. Reversing the overexpression of long genes in neurons lacking MeCP2 can improve some RTT-associated cellular deficits. These findings suggest that a function of MeCP2 in the mammalian brain is to temper the expression of genes in a length-dependent manner, and that mutations in MeCP2 and possibly other autism genes may cause neurological dysfunction by disrupting the expression of long genes in the brain.
Project description:Disruption of the MECP2 gene leads to Rett syndrome (RTT), a severe neurological disorder with features of autism. MECP2 encodes a methyl-DNA-binding protein that is proposed to function as a transcriptional repressor, but, despite numerous studies examining neuronal gene expression in MeCP2 mutants, no coherent model has emerged for how MeCP2 regulates transcription. Here we identify a genome-wide length-dependent increase in the expression of long genes in neurons lacking MeCP2. This gene misregulation occurs in human RTT brains and correlates with onset and severity of phenotypes in Mecp2 mutant mice, suggesting that the disruption of long gene expression contributes to RTT pathology. We present evidence that MeCP2 represses long genes by binding to brain-enriched, methylated CA dinucleotides within genes and show that loss of methylated CA in the brain recapitulates gene expression defects observed in MeCP2 mutants. We find that long genes encode proteins with neuronal functions, and overlap substantially with genes that have been implicated in autism and Fragile X syndrome. Reversing the overexpression of long genes in neurons lacking MeCP2 can improve some RTT-associated cellular deficits. These findings suggest that a function of MeCP2 in the mammalian brain is to temper the expression of genes in a length-dependent manner, and that mutations in MeCP2 and possibly other autism genes may cause neurological dysfunction by disrupting the expression of long genes in the brain.