Project description:Many organisms alter the chromatin state of unsynapsed chromosomes during meiotic prophase, a phenomenon hypothesized to function in maintaining germline integrity. In Caenorhabditis elegans, histone H3 lysine 9 dimethylation (H3K9me2) is detected by immunolabeling as enriched on unsynapsed meiotic chromosomes. Loss of the SET domain protein, MET-2, greatly reduces H3K9me2 abundance and results in germline mortality. Here, we used him-8 mutations to disable X chromosome synapsis and performed a combination of molecular assays to map the sites of H3K9me2 accumulation, evaluate H3K9me2 abundance in germline vs. whole animals, and evaluate the impact of H3K9me2 loss on the germline transcriptome. Our data indicate that H3K9me2 is elevated broadly across the X chromosome and at defined X chromosomal sites in him-8 adults compared with controls. H3K9me2 levels are also elevated to a lesser degree at sites on synapsed chromosomes in him-8 adults compared with controls. These results suggest that MET-2 activity is elevated in him-8 mutants generally as well as targeted preferentially to the unsynapsed X. Abundance of H3K9me2 and other histone H3 modifications is low in germline chromatin compared with whole animals, which may facilitate genome reprogramming during gametogenesis. Loss of H3K9me2 has a subtle impact on the him-8 germline transcriptome, suggesting H3K9me2 may not be a major regulator of developmental gene expression in C. elegans. We hypothesize H3K9me2 may have a structural function critical for germline immortality, and a greater abundance of these marks may be required when a chromosome does not synapse.
Project description:We sequenced mRNA isolated from adult hermaphrodite met-2;him-8 and him-8 gonads in order to determine the gene expression profile of germ cells with or without H3K9me2.
Project description:We sequenced mRNA isolated from adult hermaphrodite met-2;him-8 and him-8 gonads in order to determine the gene expression profile of germ cells with or without H3K9me2. Examination of mRNA profiles in nematode gonad of met-2;him-8 (without H3K9me2) and him-8 (with H3K9me2)
Project description:Characterization of the H3K9me2 distribution in the C. elegans adult hermaphrodite genome using ChIP-Seq Examination of H3K9me2 in two different nematode strains: fer-1 control and fer-1;him-8 mutant, where the X chromosomes are unsynapsed. The fer-1 mutation prevents production of embryos.
Project description:De novo pathway enrichment is a powerful approach to discover previously uncharacterized molecular mechanisms in addition to already known pathways. To achieve this, condition-specific functional modules are extracted from large interaction networks. Here, we give an overview of the state of the art and present the first framework for assessing the performance of existing methods. We identified 19 tools and selected seven representative candidates for a comparative analysis with more than 12,000 runs, spanning different biological networks, molecular profiles, and parameters. Our results show that none of the methods consistently outperforms the others. To mitigate this issue for biomedical researchers, we provide guidelines to choose the appropriate tool for a given dataset. Moreover, our framework is the first attempt for a quantitative evaluation of de novo methods, which will allow the bioinformatics community to objectively compare future tools against the state of the art.
Project description:Identifying functional modules or novel active pathways, recently termed de novo pathway enrichment, is a computational systems biology challenge that has gained much attention during the last decade. Given a large biological interaction network, KeyPathwayMiner extracts connected subnetworks that are enriched for differentially active entities from a series of molecular profiles encoded as binary indicator matrices. Since interaction networks constantly evolve, an important question is how robust the extracted results are when the network is modified. We enable users to study this effect through several network perturbation techniques and over a range of perturbation degrees. In addition, users may now provide a gold-standard set to determine how enriched extracted pathways are with relevant genes compared to randomized versions of the original network.
Project description:Protein engineering studies often suggest the emergence of completely new enzyme functionalities to be highly improbable. However, enzymes likely catalysed many different reactions already in the last universal common ancestor. Mechanisms for the emergence of completely new active sites must therefore either plausibly exist or at least have existed at the primordial protein stage. Here, we use resurrected Precambrian proteins as scaffolds for protein engineering and demonstrate that a new active site can be generated through a single hydrophobic-to-ionizable amino acid replacement that generates a partially buried group with perturbed physico-chemical properties. We provide experimental and computational evidence that conformational flexibility can assist the emergence and subsequent evolution of new active sites by improving substrate and transition-state binding, through the sampling of many potentially productive conformations. Our results suggest a mechanism for the emergence of primordial enzymes and highlight the potential of ancestral reconstruction as a tool for protein engineering.
Project description:De novo pathway enrichment is a systems biology approach in which OMICS data are projected onto a molecular interaction network to identify subnetworks representing condition-specific functional modules and molecular pathways. Compared to classical pathway enrichment analysis methods, de novo pathway enrichment is not limited to predefined lists of pathways from (curated) databases and thus particularly suited for discovering novel disease mechanisms. While several tools have been proposed for pathway enrichment, the integration of de novo pathway enrichment in end-to-end OMICS analysis workflows in the R programming language is currently limited to a single tool. To close this gap, we have implemented an R package KeyPathwayMineR (KPM-R). The package extends the features and usability of existing versions of KeyPathwayMiner by leveraging the power, flexibility and versatility of R and by providing various novel functionalities for performing data preparation, visualization, and comparison. In addition, thanks to its interoperability with a plethora of existing R packages in e.g., Bioconductor, CRAN, and GitHub, KPM-R allows carrying out the initial preparation of the datasets and to meaningfully interpret the extracted subnetworks. To demonstrate the package's potential, KPM-R was applied to bulk RNA-Seq data of nasopharyngeal swabs from SARS-CoV-2 infected individuals, and on single cell RNA-Seq data of aging mice tissue from the Tabula Muris Senis atlas.