Spatial dissection of the Arabidopsis response to downy mildew using Fluorescence Activated Cell Sorting
Ontology highlight
ABSTRACT: Changes in gene expression form a crucial part of the plant response to pathogen infection. Whole-leaf expression profiling has played a valuable role in identifying genes and processes that contribute to the interactions between the model plant Arabidopsis thaliana and a diverse range of pathogens. However, for highly localised infections, such as downy mildew caused by the biotrophic oomycete pathogen Hyaloperonospora arabidopsidis (Hpa), whole-leaf profiling may fail to capture the complete Arabidopsis response. Highly localised expression changes may be diluted by the comparative abundance of non-responding leaf cells or the Hpa oomycete evading detection by cells. Furthermore, local and systemic Hpa responses of a differing nature may become convoluted. To address this we applied the technique of Fluorescence Activated Cell Sorting (FACS), typically used for analyzing plant abiotic responses, to the study of plant-pathogen interactions. Using the promoter of Downy Mildew Resistant 6 (DMR6) linked to GFP as a fluorescent marker of pathogen-contacting cells, we isolated Hpa-proximal and Hpa-distal cells from infected leaf samples using FACS, and measured global gene expression.
ORGANISM(S): Arabidopsis thaliana
PROVIDER: GSE67100 | GEO | 2015/07/13
SECONDARY ACCESSION(S): PRJNA278958
REPOSITORIES: GEO
ACCESS DATA