Quiescence of Memory CD8+ T Cells Is Mediated by Regulatory T Cells through Inhibitory Receptor CTLA-4
Ontology highlight
ABSTRACT: Immune memory cells are poised to rapidly expand and elaborate effector functions upon reinfection. However, despite heightened readiness to respond, memory cells exist in a functionally quiescent state. The paradigm is that memory cells remain inactive due to lack of TCR stimuli. Here we report a unique role of Tregs in orchestrating memory quiescence by inhibiting effector and proliferation programs through CTLA-4. Loss of Tregs resulted in activation of genome-wide transcriptional programs characteristic of potent effectors, and both developing and established memory quickly reverted to a terminally differentiated (KLRG-1hi/IL-7R±lo/GzmBhi) phenotype, with compromised metabolic fitness, longevity, polyfunctionality and protective efficacy. CTLA-4, an inhibitory receptor overexpressed on Tregs, functionally replaced Tregs in trans to rescue Treg-less memory defects and restore homeostasis of secondary mediators as well. These studies present CD28-CTLA-4-CD80/CD86 axis as a novel target to potentially accelerate vaccine-induced immunity and improve T-cell memory quality in current cancer immunotherapies proposing transient Treg-depletion. We used microarray analysis to detail the global programming of gene expression in LCMV GP33-specific CD8 T cells differentiated in the presence or absence of regulatory T cells
ORGANISM(S): Mus musculus
PROVIDER: GSE67593 | GEO | 2015/06/16
SECONDARY ACCESSION(S): PRJNA280396
REPOSITORIES: GEO
ACCESS DATA