Project description:RNAseq of mutant measles virus libraries Insertional mutagenesis of measles to identify tolerated locations Mutant measles virus libraries were constructed as described in: Heaton, N.S., Sachs, D., Chen,C.J., Hai, R., and Palese, P. (2013). Genome-wide mutagenesis of influenza virus reveals unique plasticity of the hemagglutinin and NS1 proteins. PNAS. 110, 20248-20253.
Project description:Measles virus undergoes error-prone replication like other RNA viruses, but over time, it has remained antigenically monotypic. The constraints on the virus that prevent the emergence of antigenic variants are unclear. As a first step in understanding this question, we subjected the measles virus genome to unbiased insertional mutagenesis, and viruses that could tolerate insertions were rescued. Only insertions in the nucleoprotein, phosphoprotein, matrix protein, as well as intergenic regions were easily recoverable. Insertions in the glycoproteins of measles virus were severely under-represented in our screen. Host immunity depends on developing neutralizing antibodies to the hemagglutinin and fusion glycoproteins; our analysis suggests that these proteins occupy very little evolutionary space and therefore have difficulty changing in the face of selective pressures. We propose that the inelasticity of these proteins prevents the sequence variation required to escape antibody neutralization in the host, allowing for long-lived immunity after infection with the virus.
Project description:Measles virus infects serum activated airway epithelial cells and many adenocarcinoma cell lines. A microarray analysis was performed on virus permissive versus non-permissive cells. Membrane protein genes that were upregulated in permissive cells were tested as receptor/entry factors. Membrane protein genes that were upregulated in smooth airway epithelial cells (SAEC) following growth in 10% fetal calf serum that made the cell line permissive to measles virus were identified. Membrane protein genes that were upregulated in adenocarcinoma cells that were permissive to wild type measles virus infection were identified.
Project description:Measles virus infects serum activated airway epithelial cells and many adenocarcinoma cell lines. A microarray analysis was performed on virus permissive versus non-permissive cells. Membrane protein genes that were upregulated in permissive cells were tested as receptor/entry factors. Membrane protein genes that were upregulated in smooth airway epithelial cells (SAEC) following growth in 10% fetal calf serum that made the cell line permissive to measles virus were identified. Membrane protein genes that were upregulated in adenocarcinoma cells that were permissive to wild type measles virus infection were identified. [SAEC]: Airway cells (SAEC) grown in serum free media (SAGM) were purchaced from Lonza. Half the cells were cultured in SAGM, the other half were transferred into Dulbecco's 10% fetal calf serum for 24 hrs. RNA was harvested from the cells by the Qiagen RNAeasy [Adenocarcinoma cells]: MCF7, MDA-MB-468, T47D, NCI-H358, NCI-H125, MGH24 cells were permissive and A549 and MDA-MB-231 cells were non-permissive.
Project description:Human CD14+ monocytes were isolated and grown in GM-CSF and IL-4 for six days. The cells were then infected with measles virus, Chicago-1 strain, and RNA was isolated at 3, 6, 12, and 24 hours post-infection. Keywords: time-course
Project description:RNAseq analysis of purified measles virus ribonucleocapsids after adaptation to lymphocytes (Granta-519) or epithelial cells (H358)
Project description:Human CD14+ monocytes were isolated and grown in GM-CSF and IL-4 for six days. The cells were then infected with measles virus, Chicago-1 strain, and RNA was isolated at 3, 6, 12, and 24 hours post-infection.
Project description:The goal of this study was to compare cell composition, gene expression, and infectivity of different cell types in human airway epithelia following exposure to measles virus. Samples included control epithelia exposed to a mock infection and measles-virus-exposed epithelia that were sorted according to detection of green fluorescent protein (GFP) prior to library preparation and sequencing.
Project description:Lassa virus is estimated to cause thousands of human deaths per year, primarily due to spillovers from its natural host, Mastomys rodents. Efforts to create vaccines and antibody therapeutics must account for the evolutionary variability of Lassa virus's glycoprotein complex (GPC), which mediates viral entry into cells and is the target of neutralizing antibodies. To map the evolutionary space accessible to GPC, we use pseudovirus deep mutational scanning to measure how nearly all GPC amino-acid mutations affect cell entry and antibody neutralization. Our experiments define functional constraints throughout GPC. We quantify how GPC mutations affect neutralization by a panel of monoclonal antibodies and show that all antibodies are escaped by mutations that exist among natural Lassa virus lineages. Overall, our work describes a biosafety-level-2 method to elucidate the mutational space accessible to GPC and shows how prospective characterization of antigenic variation could aid design of therapeutics and vaccines.