Project description:Transcriptional profiling of lung bronchial biospsy mRNA from asthmatics Two-condition experiment, mRNA from asthma bronchial biopsies for test channel and Stratagene Universal Human Reference RNA for reference channel.
Project description:Bronchial epithelial brushings were obtained by bronchoscopy from 8 steroid-naïve asthmatics including type 2-low (n=4) and type 2-high asthma (n=4), and 4 healthy controls. The type 2-low and –high asthma was defined by the epithelial expression of a three-gene signature for type 2 status (POSTN, SERPINB2, and CLCA1).
Project description:The airway epithelium forms the interface between the inhaled environment and the lung. The airway epithelium is dysfunctional in asthma and epigenetic mechanisms are considered a contributory factor. We hypothesised that the DNA methylation profiles of cultured primary airway epithelial cells (AECs) would differ between cells isolated from individuals with asthma (n=17) versus those without asthma (n=16). AECs were isolated from patients by two different isolation techniques; pronase digestion (9 non-asthmatic, 8 asthmatic) and bronchial brushings (7 non-asthmatic and 9 asthmatic). DNA methylation was assessed using an Illumina Infinium HumanMethylation450 BeadChip array. DNA methylation of AECs clustered by isolation technique and linear regression identified 111 CpG sites differentially methylated between isolation techniques in healthy individuals. As a consequence, the effect of asthmatic status on DNA methylation was assessed within AEC samples isolated using the same technique. In pronase isolated AECs, 15 DNA regions were differentially methylated between asthmatics and non-asthmatics. In bronchial brush isolated AECs, 849 differentially methylated DNA regions were identified with no overlap to pronase regions. In conclusion, regardless of cell isolation technique, differential DNA methylation was associated with asthmatic status in AECs, providing further evidence for aberrant DNA methylation as a signature of epithelial dysfunction in asthma.
Project description:Purpose: The goal of this study is to investigate the alteration of gene expression pattern of alveolar macrophages by allergen challenge in human asthmatics. Method: By using subsegmental bronchial provocation with allergen (SBP-AG) protocol, we obtained BAL fluids, before and 48 hours after allergen challenge in the subjects enrolled in the protocol. Alveolar macrophages were purified from the BAL fluids and total RNA was isolated. Next-generation sequencing data were generated by using the Illumina system. Results: Using an optimized data analysis workflow, we mapped about 75 million sequence reads per sample to the human genome and identified 29,691 transcripts in the macrophage mRNAs. Among them, the change in the expression profiles of 37 transcripts were statistically significant. Conclusions: It has been well accepted that Th2 cytokine enriched environment transforms the phenotype of macrophages into alternatively activated form. However, the details of a genome-wide gene expression profiles of macrophages were not well investigated. Using RNA-seq technology, we provided comprehensive data of macrophage gene expression profiles in allergic lung inflammation. Our data could offer a framework to study biologic functions of alternatively activated macrophage in chronic inflammatory diseases. mRNA profiles of alveolar macrophages obtained from asthmatics, before and after allergen challenge.
Project description:A description of the transcriptome of human bronchial epithelium should provide a basis for studying lung diseases including cancer. We demonstrate here that minute epithelial specimens obtained by bronchial brushings afford reliable profiling by serial analysis of gene expression (SAGE) leading to lung gene discovery. We have deduced global gene expression profiles of bronchial epithelium and lung parenchyma, based upon a vast data set of nearly two million sequence tags from 21 SAGE libraries generated from individuals with a history of smoking. Cluster and linear regression analysis demonstrate the repeatability and reproducibility of bronchial SAGE libraries, and suggest that the transcriptome of the bronchial epithelium is distinct from that of lung parenchyma and other tissue types. This distinction is highlighted by the abundant expression of signature genes that reflect tissue-specific and region-specific functions. Through our analysis we have identified novel bronchial-enriched genes and a novel transcript variant for surfactant, pulmonary-associated protein B in lung parenchyma. Conspicuously, gene expression associated with ciliogenesis is evident in bronchial epithelium. Additionally, it is noted that a large number of unmapped tags awaits further investigation. This study represents a comprehensive delineation of the bronchial and parenchyma transcriptomes, identifying more than 20,000 known and hypothetical genes expressed in the human lung, constituting one of the largest human SAGE studies reported to date. Keywords: SuperSeries This reference Series links data in the following related Series: GSE3707 Expression profiling of bronchial epithelium GSE3708 Expression profiling of normal lung parenchyma
Project description:Prior microarray studies of smokers at high risk for lung cancer have demonstrated that heterogeneity in bronchial airway epithelial cell gene expression response to smoking can serve as an early diagnostic biomarker for lung cancer. This study examines the relationship between gene expression variation and genetic variation in a central molecular pathway (NRF2-mediated antioxidant response) associated with smoking exposure and lung cancer. We assessed global gene expression in histologically normal airway epithelial cells obtained at bronchoscopy from smokers who developed lung cancer (SC, n=20), smokers without lung cancer (SNC, n=24), and never smokers (NS, n=8). Functional enrichment showed that the NRF2-mediated antioxidant response pathway differed significantly among these groups. Keywords: Global mRNA expression profiling 21 total arrays (20 unique patients) run on total RNA obtained from Bronchial Epithelium of Smokers with Lung Cancer 30 total arrays (24 unique patients) run on total RNA obtained from Bronchial Epithelium of Smokers without Lung Cancer 9 total arrays (8 unique patients) run on total RNA obtained from Bronchial Epithelium of Never Smokers
Project description:mRNA expression was assayed from bronchial epithelial cells collected via bronchoscopy from healthy current and never smoker volunteers in order to determine relationships between microRNA and mRNA expression in bronchial epithelial cell samples across current and never smokers and within the same individual. Keywords: Global mRNA expression profiling
Project description:We have previously shown that gene-expression alterations in cytologically normal appearing bronchial epithelial cells can be used as a biomarker for lung cancer detection in smokers (Whitney et al., BMC Medical Genomics 2015; Silvestri et al., NEJM 2015). In this study, we have established that there are also alterations in bronchial microRNA-expression of smokers with lung cancer. Importantly, the performance of an existing bronchial mRNA-biomarker has been improved by integrating microRNA with mRNA expression.
Project description:19 bronchial epithelial SAGE libraries were constructed and analyzed in this study. Discussed in the study: IDENTIFICATION OF NOVEL LUNG GENES IN BRONCHIAL EPITHELIUM BY SERIAL ANALYSIS OF GENE EXPRESSION Kim M. Lonergan1, Raj Chari1, Ronald J. deLeeuw1, Ashleen Shadeo1, Bryan Chi1, Ming-Sound Tsao2, Steven Jones3, Marco Marra3, Victor Ling1, Raymond Ng1,4, Calum MacAulay5, Stephen Lam5 and Wan L. Lam1 From the 1Department of Cancer Genetics & Developmental Biology, 5Department of Cancer Imaging, 3Canada's Michael Smith Genome Sciences Centre, British Columbia Cancer Research Centre, Vancouver, BC, Canada, 2Ontario Cancer Institute / Princess Margaret Hospital, Toronto, ON, Canada, 4the Department of Computer Science, University of British Columbia, Vancouver, BC, Canada A description of the transcriptome of human bronchial epithelium should provide a basis for studying lung diseases including cancer. We demonstrate here that minute epithelial specimens obtained by bronchial brushings afford reliable profiling by serial analysis of gene expression (SAGE) leading to lung gene discovery. We have deduced global gene expression profiles of bronchial epithelium and lung parenchyma, based upon a vast data set of nearly two million sequence tags from 21 SAGE libraries generated from individuals with a history of smoking. Cluster and linear regression analysis demonstrate the repeatability and reproducibility of bronchial SAGE libraries, and suggest that the transcriptome of the bronchial epithelium is distinct from that of lung parenchyma and other tissue types. This distinction is highlighted by the abundant expression of signature genes that reflect tissue-specific and region-specific functions. Through our analysis we have identified novel bronchial-enriched genes and a novel transcript variant for surfactant, pulmonary-associated protein B in lung parenchyma. Conspicuously, gene expression associated with ciliogenesis is evident in bronchial epithelium. Additionally, it is noted that a large number of unmapped tags awaits further investigation. This study represents a comprehensive delineation of the bronchial and parenchyma transcriptomes, identifying more than 20,000 known and hypothetical genes expressed in the human lung, constituting one of the largest human SAGE studies reported to date. Keywords: bronchial epithelium 19 bronchial epithelial SAGE libraries were constructed and analyzed in this study.