Inhibition of the miR-155 target NIAM phenocopies the growth promoting effect of miR-155 in B-cell lymphoma [KM-H2]
Ontology highlight
ABSTRACT: Several studies have indicated an important role for miR-155 in the pathogenesis of B-cell lymphoma. Highly elevated levels of miR-155 were indeed observed in most B-cell lymphomas with the exception of Burkitt lymphoma (BL). However, the molecular mechanisms that underlie the oncogenic role of miR-155 in B-cell lymphoma are not well understood. To identify the miR-155 targets relevant for B-cell lymphoma, we performed RNA immunoprecipitation of Argonaute 2 in Hodgkin lymphoma (HL) cells upon miR-155 inhibition and in BL cells upon ectopic expression of miR-155. We identified 54 miR-155-specific target genes in BL cells and confirmed miR-155 targeting of DET1, NIAM, TRIM32, HOMEZ, PSIP1 and JARID2. Five of these targets are also regulated by endogenous miR-155 in HL cells. Both overexpression of miR-155 and inhibition of expression of the novel miR-155 target gene NIAM increased proliferation of BL cells. In primary B-cell lymphoma NIAM-positive cases have significant lower levels of miR-155 as compared to NIAM-negative cases, suggesting that NIAM is also regulated by miR-155 in primary B-cell lymphoma. Thus, our data indicate an oncogenic role for miR-155 in B-cell lymphoma which involves targeting the tumor suppressor NIAM.
Project description:Several studies have indicated an important role for miR-155 in the pathogenesis of B-cell lymphoma. Highly elevated levels of miR-155 were indeed observed in most B-cell lymphomas with the exception of Burkitt lymphoma (BL). However, the molecular mechanisms that underlie the oncogenic role of miR-155 in B-cell lymphoma are not well understood. To identify the miR-155 targets relevant for B-cell lymphoma, we performed RNA immunoprecipitation of Argonaute 2 in Hodgkin lymphoma (HL) cells upon miR-155 inhibition and in BL cells upon ectopic expression of miR-155. We identified 54 miR-155-specific target genes in BL cells and confirmed miR-155 targeting of DET1, NIAM, TRIM32, HOMEZ, PSIP1 and JARID2. Five of these targets are also regulated by endogenous miR-155 in HL cells. Both overexpression of miR-155 and inhibition of expression of the novel miR-155 target gene NIAM increased proliferation of BL cells. In primary B-cell lymphoma NIAM-positive cases have significant lower levels of miR-155 as compared to NIAM-negative cases, suggesting that NIAM is also regulated by miR-155 in primary B-cell lymphoma. Thus, our data indicate an oncogenic role for miR-155 in B-cell lymphoma which involves targeting the tumor suppressor NIAM.
Project description:Several studies have indicated an important role for miR-155 in the pathogenesis of B-cell lymphoma. Highly elevated levels of miR-155 were indeed observed in most B-cell lymphomas with the exception of Burkitt lymphoma (BL). However, the molecular mechanisms that underlie the oncogenic role of miR-155 in B-cell lymphoma are not well understood. To identify the miR-155 targets relevant for B-cell lymphoma, we performed RNA immunoprecipitation of Argonaute 2 in Hodgkin lymphoma (HL) cells upon miR-155 inhibition and in BL cells upon ectopic expression of miR-155. We identified 54 miR-155-specific target genes in BL cells and confirmed miR-155 targeting of DET1, NIAM, TRIM32, HOMEZ, PSIP1 and JARID2. Five of these targets are also regulated by endogenous miR-155 in HL cells. Both overexpression of miR-155 and inhibition of expression of the novel miR-155 target gene NIAM increased proliferation of BL cells. In primary B-cell lymphoma NIAM-positive cases have significant lower levels of miR-155 as compared to NIAM-negative cases, suggesting that NIAM is also regulated by miR-155 in primary B-cell lymphoma. Thus, our data indicate an oncogenic role for miR-155 in B-cell lymphoma which involves targeting the tumor suppressor NIAM.
Project description:MYC regulates the expression of multiple microRNA (miRNA) genes and defines the Burkitt lymphoma (BL) miRNA signature. Here, we investigate the role of the MYC-regulated miRNAs by gain- and loss-of-function analysis. Overexpression of 5 miRNAs that were significantly downregulated by MYC resulted in strong (miR-150, miR-26a, miR-26b) and mild (miR-29a, let-7a) impaired cell growth. Overexpression of miR-155 increased proliferation of BL cells. By RNA immunoprecipitation of Argonaute 2 in BL cells with and without miR-155 we identified 54 miR-155 target genes. Using an shRNA approach we identified TBRG1 (NIAM1) as a miR-155 target gene that copied the miR-155-induced phenotype upon its inhibition. Analysis of TBRG1 protein expression and miR-155 levels in primary cases of B-cell lymphoma revealed that miR-155 levels are significantly lower in TBRG1 positive cases suggesting that TBRG1 is also regulated by miR-155 in primary B-cell lymphoma. Our data demonstrate that overexpression of individual MYC-repressed miRNAs has a strong suppressive effect on BL cell growth, whereas overexpression of miR-155 enhances B-cell lymphoma growth by targeting the tumor suppressor gene TBRG1. Gene expression profile was performed in ST486 Burkitt lymphoma cell line in 4 samples: ST486 EV (empty MXW-PGK-IRES-GFP vector) total cell lysate, ST486 EV Ago2-IP, ST486 miR-155 (ST486 with ectopic miR-155) total cell lysate, ST486 miR-155 Ago2-IP.
Project description:Overexpression of miR-155 in hematological tissue leads to the onset of lymphoma, and Tet-off shutdown of this overexpression reverses the disease phenotype in mir-155LSLtTA mice. This study compares the gene expression profiles of tumors with miR-155 overexpression and withdrawal.
Project description:miR-155 transgenic mice develop pre-B cell leukemia/lymphoma. Though some targets of miR-155 are known, understanding of the mechanism by which miR-155 overexpression drives malignant transformation is not known. MicroRNAs regulate multiple genes.
Project description:In Burkitt lymphoma (BL), a network consisting of MYC, MYC-repressed miR-150, known miR-150 target MYB and two novel targets of miR-150, ZDHHC11 and ZDHHC11B, has been established. This network plays an important role on the growth of BL cells. Here, we confirmed that MYB, ZDHHC11 and ZDHHC11B are targeted by miR-150 in Hodgkin lymphoma (HL) cell lines too.
Project description:Overexpression of miR-155 in hematological tissue leads to the onset of lymphoma, and Tet-off shutdown of this overexpression reverses the disease phenotype in mir-155LSLtTA mice. This study compares the gene expression profiles of tumors with miR-155 overexpression and withdrawal. Examination of mRNA from 2 conditions: miR-155 overexpressing tumors and miR-155 overexpressing tumors from mice exposed to doxycycline (DOX) for 16hrs prior to harvest; samples in triplicate; tumors generated in flanks of nude mice by subcutaneous injection of splenic cells from diseased mir-155LSLtTA mice.
Project description:miR-155 transgenic mice develop pre-B cell leukemia/lymphoma. Though some targets of miR-155 are known, understanding of the mechanism by which miR-155 overexpression drives malignant transformation is not known. MicroRNAs regulate multiple genes. 3 transgenic and 4 wild type mice B-cells were analyzed
Project description:miR-155 is a microRNA associated with poor prognosis in lymphoma and leukemia and has been implicated in the progression of Mycosis Fungoides (MF), the most common form of cutaneous T-cell lymphoma (CTCL). In this study, we developed and tested Cobomarsen (MRG-106), a locked nucleic acid-modified oligonucleotide inhibitor of miR-155. In MF cell lines in vitro, inhibition of miR-155 with Cobomarsen de-repressed direct miR-155 targets, decreased expression of multiple gene pathways associated with cell survival, reduced survival signaling, decreased cell proliferation, and activated apoptosis. We identified a set of genes that are significantly regulated by Cobomarsen, which includes direct and downstream targets of miR-155.
Project description:MicroRNAs are small, non-coding RNAs that post-transcriptionally regulate gene expression by binding to 3’UTRs of target mRNAs. Kaposi’s sarcoma-associated herpesvirus (KSHV), a virus linked to malignancies including primary effusion lymphoma (PEL), encodes 12 miRNA genes, but only a few regulatory targets are known. We found that KSHV-miR-K12-11 shares 100% seed-sequence homology with hsa-miR-155, a miRNA frequently found up-regulated in lymphomas and critically important for B cell development. Based on this seed-sequence homology, we hypothesized that both miRNAs regulate a common set of target genes and as a result, could have similar biological activities. Examination of five PEL lines showed that PELs do not express miR-155, but do express high levels of miR-K12-11. Bioinformatics tools predicted the transcriptional repressor BACH-1 to be targeted by both miRNAs and ectopic expression of either miR-155 or miR-K12-11 inhibited a BACH-1 3'UTR containing reporter. . Furthermore, BACH-1 protein levels are low in cells expressing either miRNA. Gene expression profiling of miRNA-expressing stable cell lines revealed 66 genes that were commonly down-regulated. For select genes, miRNA targeting was confirmed by reporter assays. Thus, based on our in silico predictions, reporter assays, and expression profiling data, miR-K12-11 and miR-155 regulate a common set of cellular targets. Given the role of miR-155 during B cell maturation, we speculate that miR-K12-11 may contribute to the distinct developmental phenotype of PEL cells, which are blocked in a late stage of B cell development. Together, these findings indicate that KSHV miR-K12-11 is an ortholog of miR-155. Keywords: comparison, experiemental versus control