Project description:The Piwi-interacting RNA (piRNA) pathway is a small RNA-based innate immune system that defends germ cell genomes against transposons. In Drosophila ovaries, the nuclear Piwi protein is required for transcriptional silencing of transposons, though the precise mechanisms by which this occurs are unknown. Here we show that the CG9754 protein is a component of Piwi complexes that functions downstream of Piwi and its binding partner, Asterix, in transcriptional silencing. Enforced tethering of CG9754 to nascent messenger RNA transcripts causes cotranscriptional silencing of the source locus and the deposition of repressive chromatin marks. We have named CG9754 "Panoramix," and we propose that this protein could act as an adaptor, scaffolding interactions between the piRNA pathway and the general silencing machinery that it recruits to enforce transcriptional repression.
Project description:The Piwi-interacting RNA (piRNA) pathway is a small RNA-based innate immune system that defends germ cell genomes against transposons. In Drosophila ovaries, the nuclear Piwi protein is required for transcriptional silencing of transposons, though the precise mechanisms by which this occurs are unknown. Here we show that CG9754 is a component of Piwi complexes that functions downstream of Piwi and its binding partner, Asterix, in transcriptional silencing. Enforced tethering of CG9754 protein to nascent mRNA transcripts causes co-transcriptional silencing of the source locus and the deposition of repressive chromatin marks. We have named CG9754 Panoramix, and propose that this protein could act as an adaptor, scaffolding interactions between the piRNA pathway and the general silencing machinery that it recruits to enforce transcriptional repression.
Project description:The Piwi-interacting RNA (piRNA) pathway is a small RNA-based innate immune system that defends germ cell genomes against transposons. In Drosophila ovaries, the nuclear Piwi protein is required for transcriptional silencing of transposons, though the precise mechanisms by which this occurs are unknown. Here we show that CG9754 is a component of Piwi complexes that functions downstream of Piwi and its binding partner, Asterix, in transcriptional silencing. Enforced tethering of CG9754 protein to nascent mRNA transcripts causes co-transcriptional silencing of the source locus and the deposition of repressive chromatin marks. We have named CG9754 Panoramix, and propose that this protein could act as an adaptor, scaffolding interactions between the piRNA pathway and the general silencing machinery that it recruits to enforce transcriptional repression.
Project description:The Piwi-interacting RNA (piRNA) pathway is a small RNA-based innate immune system that defends germ cell genomes against transposons. In Drosophila ovaries, the nuclear Piwi protein is required for transcriptional silencing of transposons, though the precise mechanisms by which this occurs are unknown. Here we show that CG9754 is a component of Piwi complexes that functions downstream of Piwi and its binding partner, Asterix, in transcriptional silencing. Enforced tethering of CG9754 protein to nascent mRNA transcripts causes co-transcriptional silencing of the source locus and the deposition of repressive chromatin marks. We have named CG9754 Panoramix, and propose that this protein could act as an adaptor, scaffolding interactions between the piRNA pathway and the general silencing machinery that it recruits to enforce transcriptional repression.
Project description:The Piwi-interacting RNA (piRNA) pathway is a small RNA-based innate immune system that defends germ cell genomes against transposons. In Drosophila ovaries, the nuclear Piwi protein is required for transcriptional silencing of transposons, though the precise mechanisms by which this occurs are unknown. Here we show that CG9754 is a component of Piwi complexes that functions downstream of Piwi and its binding partner, Asterix, in transcriptional silencing. Enforced tethering of CG9754 protein to nascent mRNA transcripts causes co-transcriptional silencing of the source locus and the deposition of repressive chromatin marks. We have named CG9754 Panoramix, and propose that this protein could act as an adaptor, scaffolding interactions between the piRNA pathway and the general silencing machinery that it recruits to enforce transcriptional repression.
Project description:PIWI clade Argonaute proteins silence transposon expression in animal gonads. Their target specificity is defined by bound ∼23- to 30-nucleotide (nt) PIWI-interacting RNAs (piRNAs) that are processed from single-stranded precursor transcripts via two distinct pathways. Primary piRNAs are defined by the endonuclease Zucchini, while biogenesis of secondary piRNAs depends on piRNA-guided transcript cleavage and results in piRNA amplification. Here, we analyze the interdependencies between these piRNA biogenesis pathways in developing Drosophila ovaries. We show that secondary piRNA-guided target slicing is the predominant mechanism that specifies transcripts—including those from piRNA clusters—as primary piRNA precursors and defines the spectrum of Piwi-bound piRNAs in germline cells. Post-transcriptional silencing in the cytoplasm therefore enforces nuclear transcriptional target silencing, which ensures the tight suppression of transposons during oogenesis. As target slicing also defines the nuclear piRNA pool during mouse spermatogenesis, our findings uncover an unexpected conceptual similarity between the mouse and fly piRNA pathways.
Project description:The PIWI-interacting RNA (piRNA) pathway is a small RNA-based immune system that controls the expression of transposons and maintains genome integrity in animal gonads. In Drosophila, piRNA-guided silencing is achieved, in part, via co-transcriptional repression of transposons by Piwi. This depends on Panoramix (Panx); however, precisely how an RNA binding event silences transcription remains to be determined. Here we show that Nuclear Export Factor 2 (Nxf2) and its co-factor, Nxt1, form a complex with Panx and are required for co-transcriptional silencing of transposons in somatic and germline cells of the ovary. Tethering of Nxf2 or Nxt1 to RNA results in silencing of target loci and the concomitant accumulation of repressive chromatin marks. Nxf2 and Panx proteins are mutually required for proper localization and stability. We mapped the protein domains crucial for the Nxf2/Panx complex formation and show that the amino-terminal portion of Panx is sufficient to induce transcriptional silencing.