Exemplary multiplex bisulfite amplicon data used to demonstrate the utility of Methpat.
Ontology highlight
ABSTRACT: DNA methylation is a complex epigenetic marker that can be analysed using a wide variety of methods. Interpretation and visualisation of DNA methylation data can mask complexity in terms of methylation status at each CpG site, cellular heterogeneity of samples and allelic DNA methylation patterns within a given DNA strand. Bisulfite sequencing is considered the gold standard, however visualisation of massively parallel sequencing results remains a significant challenge. We created a program called Methpat that facilitates visualisation and interpretation of bisulfite sequencing data generated by massively parallel sequencing. To demonstrate this, we performed multiplex PCR that targeted 48 regions of interest across 95 human samples. The regions selected included known gene promoters associated with cancer, repetitive elements, known imprinted regions and mitochondrial genomic sequences. We interrogated a range of samples including human cell lines, primary tumours and primary tissue samples. Methpat generates two forms of output: a tab delimited text file for each sample that summarises DNA methylation patterns and their read counts for each amplicon and a HTML file that summarises this data visually. Methpat can be used with publicly available whole genome bisulfite sequencing (WGBS) and reduced representation bisulfite sequencing (RRBS) datasets with sufficient read depths. Using Methpat, complex DNA methylation data derived from massively parallel sequencing can be summarised and visualised for biological interpretation. By accounting for allelic DNA methylation states and their abundance in a sample, Methpat can unmask the complexity of DNA methylation and reveal further biological insight in existing datasets.
ORGANISM(S): Homo sapiens
PROVIDER: GSE71804 | GEO | 2015/11/23
SECONDARY ACCESSION(S): PRJNA292314
REPOSITORIES: GEO
ACCESS DATA