Coordinate transcriptional activation of salicylic acid and trehalose synthesis, oxidative/ER stress and innate immunity pathways by inducible artificial microRNA silencing of the SNF4 activator subunit of Arabidopsis SnRK1
Ontology highlight
ABSTRACT: Arabidopsis SnRK1 is structurally and functionally related to the yeast Snf1 and mammalian AMP-activated kinases, which are activated in response to carbon/glucose limitation and stress conditions causing an imbalance of energy homeostasis increasing the AMP/ATP ratio. Mutations of the SNF4 activating subunit of trimeric Arabidopsis SnRK1 complexes are not transmitted through the male meiosis. Silencing of SNF4 by a β-estradiol-inducible artificial microRNA (amiR-SNF4) constructs was used to examine how inhibition of SnRK1 affects transcriptional regulation of different cellular pathways in dark and light grown seedlings. This study shows that amiR-SNF4 silencing of SnRK1 leads to coordinate transcriptional activation of salicylic acid and trehalose synthesis, oxidative/endoplasmic reticulum stress and pathogen defense responses by inducing simultaneous changes in numerous other essential hormonal and metabolic pathways in Arabidopsis. We used Affymetrix ATH1-121501 Genome Array to compare global transcript levels in wild type and β-estradiol-induced amiR-SNF4 mutant seedlings 5 days after germination in the dark or light.
ORGANISM(S): Arabidopsis thaliana
PROVIDER: GSE72674 | GEO | 2016/05/01
SECONDARY ACCESSION(S): PRJNA294626
REPOSITORIES: GEO
ACCESS DATA