Project description:Purpose: To investigate the effects of weight cycling on the metabolic homeostasis Methods: C57BL/6 mice were fed with high fat diet (HF) (60% kcal fat; Research Diets Inc., New Brunswick, NJ) or low fat diet (LF) (10% kcal fat; Research Diets Inc.) at 6-week-old. Nine weeks after in HF, a part of mice was switched to LF for one week followed by one week HF as one cycle, and the mice under this one week diet switch protocol for 10 cycles were named HF-LF cycled mice, while the left part of mice under continuously HF-feeding were named HF mice. The mice kept in the continuously LF-feeding were named LF mice Results: We identified many changed genes in the eWAT by RNA-sequencing. Conclusions: This finding provides a signaling in eWAT upon weight cycling
Project description:In the setting of obesity and insulin resistance, glycemia is controlled in part by beta cell compensation and subsequent hyperinsulinemia. Weight loss improves glycemia and decreases hyperinsulinemia, whereas weight cycling worsens glycemic control. The mechanisms responsible for weight cycling-induced deterioration in glucose homeostasis are poorly understood. Thus, we aimed to pinpoint the main regulatory junctions at which weight cycling alters glucose homeostasis in mice. Using in vivo and ex vivo procedures we show that despite having worsened glucose tolerance, weight-cycled mice do not manifest impaired whole-body insulin action. Instead, weight cycling reduces insulin secretory capacity in vivo during clamped hyperglycemia and ex vivo in perifused islets. Islets from weight-cycled mice have reduced expression of drivers of b-cell identity (Mafa, Pdx1, Nkx6.1, Ucn3) and lower islet insulin content, compared to those from obese mice, suggesting inadequate transcriptional and posttranscriptional response to repeated nutrient overload. Collectively, these data support a model in which pancreatic plasticity is challenged in the face of large fluctuations in body weight resulting in a mismatch between glycemia and insulin secretion in mice.
Project description:The epididymal adipose tissue (eWAT) samples from wild type mice fed high-fat diet for 12 weeks (H_WT_E) and Mdm2 adipocyte-specific knock-in mice fed high-fat diet for 12 weeks (H_KI_E) were mixed separately, and subjected to proteomic study by Label-free quantitative techniques and mass spectrometry-based proteomics techniques, etc. The proteomics of mixed eWAT samples were performed in Jingjie PTM BioLab (Hangzhou) Co. Ltd (www.ptm-biolab.com.cn). The difference was determined by 1.5-fold-change criterion, FDR < 0.01.
Project description:Most individuals do not maintain weight loss, and weight regain increases cardio-metabolic risk beyond that of obesity. Adipose inflammation directly contributes to insulin resistance; however, immune-related changes that occur with weight loss and weight regain are not well understood. Single cell RNA-sequencing was completed with CITE-sequencing and biological replicates to profile changes in murine immune subpopulations following obesity, weight loss, and weight cycling. Weight loss normalized glucose tolerance, however, type 2 immune cells did not repopulate adipose following weight loss. Many inflammatory populations persisted with weight loss and increased further following weight regain. Obesity drove T cell exhaustion and broad increases in antigen presentation, lipid handing, and inflammation that persisted with weight loss and weight cycling. This work provides critical groundwork for understanding the immunological causes of weight cycling-accelerated metabolic disease.
Project description:This program addresses the gene signature associated with the development of type 2 diabetes in the db/db mice. Specifically, which genes are differentially expressed in adipose tissue of the db/db mice compared to the control db/+ mice? The db/db mice eWAT profiling data was analyzed by identifying genes that were up- and down-regulated at selected p value and fold change in the eWAT of db/db mice compared to the corresponding db/+ controls.
Project description:Objective: Procyanidins are polyphenolic bioactive compounds that exert beneficial effects against obesity and its related diseases. The aim of this study was to evaluate whether the supplementation with low doses of a grape seed procyanidin extract (GSPE) to dams during pre and postnatal periods has biological effects on their offspring at youth. Design: The metabolic imprinting effect of GSPE was evaluated in 30 days-old male offspring of four groups of rats that were fed either a standard diet (STD) or a high-fat diet (HFD) and supplemented with either GSPE at 25 mg per kg of body weight/day or vehicle during pregnancy and lactation. Results: A significant increase in the adiposity index and in the weight of all the white adipose tissue depots studied (retroperitoneal â??RWAT-, mesenteric â??MWAT-, epididymal â??EWAT- and inguinal â??IWAT-) was observed in offspring of dams fed with a HFD and treated with GSPE (HFT group), compared to the offspring of dams fed with the same diet and that do not received procyanidins (HF group). HFT animals also showed a higher number of cells in the EWAT, a sharply decrease of the circulating levels of monocyte chemoattractant protein-1 (MCP-1) as well as a moderate, but significant, decrease of plasma glycerol levels. The transcriptomic analysis performed in the EWAT showed 238 genes differentially expressed between HF and HFT animals, covering an entire range of processes related with the immune function and the inflammatory response (the metabolic pathway mainly reflected in the EWAT), adipose tissue remodeling and function, lipid and glucose homeostasis and metabolism of methyl groups. Conclusion: GSPE treatment to dams fed a HFD during pregnancy and lactation increases adiposity, decreases the circulating levels of MCP-1 and modulates the expression of key genes involved in the adipose tissue metabolism of their offspring. The microarray study was performed with the EWAT RNA samples of rats from the HF and the HFT groups (n=8 animals each).
Project description:We performed unbiased transcriptional profiling of white adipose tissue (eWAT, epididymal white adipose tissue) from mice to determine mechanisms by which xanthohumol and tetrahydroxanthohumol supplementation could ameliorate hepatosteatosis induced by a HFD at the transcriptional level. We conducted RNA-seq analysis of total RNA of ewat obtained from mice after 16 weeks on the diet.
Project description:Comparison of gene expression level of 3T3-L1, PMEF and ES cell derived adipocytes to eWAT samples. We used microarray to investigate the gene expressional differences between different cellular models of adipocyte differentiation vs. in vivo eWAT tissues