Mechanisms of phenanthrene toxicity in the soil invertebrate Enchytraeus crypticus
Ontology highlight
ABSTRACT: Polycyclic Aromatic Hydrocarbons (PAHs) continue to cause environmental challenges due to their release in the environment by a great variety of anthropogenic activities and their accumulation in soil ecosystems. Here we studied the toxicological effect of the model PAH phenanthrene (Phe) on the soil invertebrate model Enchytraeus crypticus at the individual, tissue and molecular level. Organisms were exposed to Phe for 2 and 21 days to the (previously estimated) EC10 and EC50 (population reproduction over 3 weeks). Gene expression profiling did not reveal a typical Phe-induced biotransfor-mation signature, as it usually does in arthropods and vertebrates. Instead, we observed only general metabolic processes to be affected after 2 days of exposure, such as translation and ATP synthesis-coupled electron transport. Histological sections of tissues of 2-day exposed animals did not show any deviations from the control situation. In contrast, prolonged exposure up to 21 days showed histopathological effects: chloragogenous cells were highly vacuolated and hypertrophic. This was corroborated by differential expression of genes related to immune response and oxidative stress at the transcriptomic level. The data exemplify the complexity and species-specific features of PAH toxicity among soil invertebrate communities, which restricts read-across and extrapolation in the context of soil ecological risk assessment.
ORGANISM(S): Enchytraeus crypticus
PROVIDER: GSE74114 | GEO | 2015/12/18
SECONDARY ACCESSION(S): PRJNA299072
REPOSITORIES: GEO
ACCESS DATA