Lin28A binds active promoters and recruits Tet1 to regulate gene expression
Ontology highlight
ABSTRACT: Lin28, a well-known RNA-binding protein, regulates diverse cellular properties. All physiological functions of Lin28A characterized so far have been attributed to its repression of let-7 miRNA biogenesis or modulation of the mRNA translational efficiency. Here we show that Lin28A directly binds to a consensus DNA sequence in vitro and in mouse embryonic stem cells in vivo. ChIP-seq and RNA-seq reveal the enrichment of Lin28A binding around transcription start sites, and a positive correlation between its genomic occupancy and expression of many associated genes. Mechanistically, Lin28A recruits 5-methylcytosine-dioxygenase Tet1 to genomic binding sites to orchestrate 5-methylcytosine and 5-hydroxymethylcytosine dynamics. Either Lin28A or Tet1 knockdown leads to dysregulated DNA methylation and expression of common target genes. These results reveal a surprising role for Lin28A in transcriptional regulation via epigenetic DNA modifications and provide a new framework for understanding mechanisms underlying versatile functions of Lin28A in mammalian systems.
Project description:Lin28, a well-known RNA-binding protein, regulates diverse cellular properties. All physiological functions of Lin28A characterized so far have been attributed to its repression of let-7 miRNA biogenesis or modulation of the mRNA translational efficiency. Here we show that Lin28A directly binds to a consensus DNA sequence in vitro and in mouse embryonic stem cells in vivo. ChIP-seq and RNA-seq reveal the enrichment of Lin28A binding around transcription start sites, and a positive correlation between its genomic occupancy and expression of many associated genes. Mechanistically, Lin28A recruits 5-methylcytosine-dioxygenase Tet1 to genomic binding sites to orchestrate 5-methylcytosine and 5-hydroxymethylcytosine dynamics. Either Lin28A or Tet1 knockdown leads to dysregulated DNA methylation and expression of common target genes. These results reveal a surprising role for Lin28A in transcriptional regulation via epigenetic DNA modifications and provide a new framework for understanding mechanisms underlying versatile functions of Lin28A in mammalian systems. Examine the DNA binding ability of Lin28 and its roles in regulating gene expression by coordinating with Tet1
Project description:LIN28A is a highly-conserved RNA-binding protein which is known to be involved in embryonic development, stem cell maintenance and proliferation. LIN28A is expressed in various types of cancer, and they are associated with advanced tumor malignancy. In embryonic stem cell, LIN28A specifically binds to let-7 precursors to suppress biogenesis of the let-7 microRNA family. In addition, Lin28 was reported to bind several mRNAs such as Oct4, cyclin A/B and histone H2A to activate their translation. For comprehensive understanding of the interaction between LIN28A and their target RNAs, we exploited UV-crosslinking and immunoprecipitation (CLIP) to capture their in vivo binding to target RNAs. LIN28A-binding RNAs were identified in a mouse embryonic stem cell line using multiple monoclonal and polyclonal antibodies. The result shows that LIN28A preferentially binds to let-7 precursors through GGAG binding motif, which is consistent with our previous results. We also identified that LIN28A binding is enriched in a certain subset of mRNAs. To understand the function of the novel LIN28A-mRNA binding, we carried out ribosome profiling from LIN28A-depleted mouse embryonic stem cells. Examination of RNA binding of LIN28A and translation in mouse embryonic stem cell.
Project description:LIN28A is a highly-conserved RNA-binding protein which is known to be involved in embryonic development, stem cell maintenance and proliferation. LIN28A is expressed in various types of cancer, and they are associated with advanced tumor malignancy. In embryonic stem cell, LIN28A specifically binds to let-7 precursors to suppress biogenesis of the let-7 microRNA family. In addition, LIN28A was reported to bind several mRNAs such as Oct4, cyclin A/B and histone H2A to activate their translation. For comprehensive understanding of the interaction between LIN28A and their target RNAs, we exploited UV-crosslinking and immunoprecipitation (CLIP) to capture their in vivo binding to target RNAs. LIN28A-binding RNAs were identified in a mouse embryonic stem cell line using multiple monoclonal and polyclonal antibodies. The result shows that LIN28 preferentially binds to let-7 precursors through GGAG binding motif, which is consistent with our previous results. We also identified that LIN28A binding is enriched in a certain subset of mRNAs. To understand the function of the novel LIN28A-mRNA binding, we carried out ribosome profiling from LIN28A-depleted mouse embryonic stem cells. Examination of miRNA level in embryonic stem cell treated with siRNA for GFP or for Lin28a
Project description:LIN28A is a highly-conserved RNA-binding protein which is known to be involved in embryonic development, stem cell maintenance and proliferation. LIN28A is expressed in various types of cancer, and they are associated with advanced tumor malignancy. In embryonic stem cell, LIN28A specifically binds to let-7 precursors to suppress biogenesis of the let-7 microRNA family. In addition, LIN28A was reported to bind several mRNAs such as Oct4, cyclin A/B and histone H2A to activate their translation. For comprehensive understanding of the interaction between LIN28A and their target RNAs, we exploited UV-crosslinking and immunoprecipitation (CLIP) to capture their in vivo binding to target RNAs. LIN28A-binding RNAs were identified in a mouse embryonic stem cell line using multiple monoclonal and polyclonal antibodies. The result shows that LIN28 preferentially binds to let-7 precursors through GGAG binding motif, which is consistent with our previous results. We also identified that LIN28A binding is enriched in a certain subset of mRNAs. To understand the function of the novel LIN28A-mRNA binding, we carried out ribosome profiling from LIN28A-depleted mouse embryonic stem cells. Examination of mRNA level in embryonic stem cell treated with siRNA for GFP or for Lin28a
Project description:LIN28A is a highly-conserved RNA-binding protein which is known to be involved in embryonic development, stem cell maintenance and proliferation. LIN28A is expressed in various types of cancer, and they are associated with advanced tumor malignancy. In embryonic stem cell, LIN28A specifically binds to let-7 precursors to suppress biogenesis of the let-7 microRNA family. In addition, LIN28A was reported to bind several mRNAs such as Oct4, cyclin A/B and histone H2A to activate their translation. For comprehensive understanding of the interaction between LIN28A and their target RNAs, we exploited UV-crosslinking and immunoprecipitation (CLIP) to capture their in vivo binding to target RNAs. LIN28A-binding RNAs were identified in a mouse embryonic stem cell line using multiple monoclonal and polyclonal antibodies. The result shows that LIN28 preferentially binds to let-7 precursors through GGAG binding motif, which is consistent with our previous results. We also identified that LIN28A binding is enriched in a certain subset of mRNAs. To understand the function of the novel LIN28A-mRNA binding, we carried out ribosome profiling from LIN28A-depleted mouse embryonic stem cells.
Project description:LIN28A is a highly-conserved RNA-binding protein which is known to be involved in embryonic development, stem cell maintenance and proliferation. LIN28A is expressed in various types of cancer, and they are associated with advanced tumor malignancy. In embryonic stem cell, LIN28A specifically binds to let-7 precursors to suppress biogenesis of the let-7 microRNA family. In addition, LIN28A was reported to bind several mRNAs such as Oct4, cyclin A/B and histone H2A to activate their translation. For comprehensive understanding of the interaction between LIN28A and their target RNAs, we exploited UV-crosslinking and immunoprecipitation (CLIP) to capture their in vivo binding to target RNAs. LIN28A-binding RNAs were identified in a mouse embryonic stem cell line using multiple monoclonal and polyclonal antibodies. The result shows that LIN28 preferentially binds to let-7 precursors through GGAG binding motif, which is consistent with our previous results. We also identified that LIN28A binding is enriched in a certain subset of mRNAs. To understand the function of the novel LIN28A-mRNA binding, we carried out ribosome profiling from LIN28A-depleted mouse embryonic stem cells.
Project description:LIN28A is a highly-conserved RNA-binding protein which is known to be involved in embryonic development, stem cell maintenance and proliferation. LIN28A is expressed in various types of cancer, and they are associated with advanced tumor malignancy. In embryonic stem cell, LIN28A specifically binds to let-7 precursors to suppress biogenesis of the let-7 microRNA family. In addition, Lin28 was reported to bind several mRNAs such as Oct4, cyclin A/B and histone H2A to activate their translation. For comprehensive understanding of the interaction between LIN28A and their target RNAs, we exploited UV-crosslinking and immunoprecipitation (CLIP) to capture their in vivo binding to target RNAs. LIN28A-binding RNAs were identified in a mouse embryonic stem cell line using multiple monoclonal and polyclonal antibodies. The result shows that LIN28A preferentially binds to let-7 precursors through GGAG binding motif, which is consistent with our previous results. We also identified that LIN28A binding is enriched in a certain subset of mRNAs. To understand the function of the novel LIN28A-mRNA binding, we carried out ribosome profiling from LIN28A-depleted mouse embryonic stem cells.
Project description:Ten-eleven translocation (Tet) hydroxylases (Tet1-3) oxidize 5-methylcytosine (5mC) to 5-hydroxymethylcytosine (5hmC). In neurons increased 5hmC levels within gene bodies correlate positively with gene expression. The mechanisms controlling Tet activity and 5hmC levels are poorly understood. In particular, it is not known how the neuronal Tet3 isoform lacking a DNA binding domain is targeted to the DNA. To identify factors binding to Tet3 we screened for proteins that co-precipitate with Tet3 from mouse retina and identified the transcriptional repressor Rest as a highly enriched Tet3-specific interactor. Rest was able to enhance Tet3 hydroxylase activity after co-expression and overexpression of Tet3 activated transcription of Rest-target genes. Moreover, we found that Tet3 also interacts with Nsd3 and two other H3K36 methyltransferases and is able to induce H3K36 trimethylation. We propose a mechanism for transcriptional activation in neurons that involves Rest-guided targeting of Tet3 to the DNA for directed 5hmC-generation and Nsd3-mediated H3K36 trimethylation.
Project description:The RNA-binding protein LIN28A is required for maintaining tissue homeostasis, including in the reproductive system, but the underlying mechanisms on how LIN28A regulates germline progenitors remain unclear. Here, we dissected LIN28A-binding targets using high-throughput sequencing of RNAs isolated by crosslinking immunoprecipitation (HITS-CLIP) in the mouse testes. LIN28A preferentially binds to mRNA coding sequence (CDS) or 3'UTR regions at sites enriched wiGAG(A) sequences. Further investigation of Lin28a null mouse testes indicated that meiosis-associated mRNAs bound by LIN28A were differentially expressed. Next, ribosome profiling revealed that the mRNA levels of these targets were significantly reduced in polysome fractions, and their protein expression levels decreased in the Lin28a null mouse testes, even when meiotic arrest in the null mouse testes was not apparent. Collectively, these findings provide a set of LIN28A-regulated target mRNAs, and show that LIN28A binding might be mechanism through which LIN28A acts to regulate undifferentiated spermatogonia fates and male fertility in mammals.
Project description:Purpose: we want to see gene expression changes during in vitro expansion of VM-derived NSCs (VM-NSCs) with cell passges in the absence or presence of Lin28a overexpression. changes upon Lin28 overexpression in P1 and P3 stages of Neural stem cells. RNA-seq, sRNA-seq, and Polysome-seq with/without Lin28 overexpression in P1 and P3 stages of Neural stem cells.