Project description:We addressed the potential for global regulation of miRNA biogenesis by BDNF using miRNA arrays that selectively measure mature miRNA, as opposed to pre-miRNA. Hippocampal neurons were treated with BDNF for 30 min in the presence of Actinomycin-D to assess changes due to processing of existing pre-miRNAs rather than new pre-miRNA production. We used Applied Biosystems 7900HT Fast Real-Time PCR system using Taqman Rodent MicroRNA Array A. Data is from three paired BDNF and Mock experiments (1,2,3).
Project description:We addressed the potential for global regulation of miRNA biogenesis by BDNF using miRNA arrays that selectively measure mature miRNA, as opposed to pre-miRNA. Hippocampal neurons were treated with BDNF for 30 min in the presence of Actinomycin-D to assess changes due to processing of existing pre-miRNAs rather than new pre-miRNA production. We used Applied Biosystems 7900HT Fast Real-Time PCR system using Taqman Rodent MicroRNA Array A. Data is from three paired BDNF and Mock experiments (1,2,3). Each array (TaqMan) contained 375 rodent miRNA targets of which 195 were detectable in hippocampus in three independent paired experiments.
Project description:We established a neuron-specific Argonaute2:GFP-RNA immunoprecipitation followed by high throughput sequencing (AGO2-RIP-seq) to analyse the regulatory role of miRNAs in mouse hippocampal neurons. Using this technique, we identified more than two thousand miRNA target genes in hippocampal neurons, regulating essential neuronal features such as axon guidance and transcription. Furthermore, we found that stable inhibition of the highly expressed miR-124 in hippocampal neurons led to significant changes in the AGO2 binding of target mRNAs, resulting in subsequent upregulation of numerous miRNA target genes. Our data suggest that target redundancies are common among microRNA families. Together, these findings greatly enhance our understanding of the mechanisms and dynamics through which miRNAs regulate their target genes in neurons.
Project description:We established a neuron-specific Argonaute2:GFP-RNA immunoprecipitation followed by high throughput sequencing (AGO2-RIP-seq) to analyse the regulatory role of miRNAs in mouse hippocampal neurons. Using this technique, we identified more than two thousand miRNA target genes in hippocampal neurons, regulating essential neuronal features such as axon guidance and transcription. Furthermore, we found that stable inhibition of the highly expressed miR-124 in hippocampal neurons led to significant changes in the AGO2 binding of target mRNAs, resulting in subsequent upregulation of numerous miRNA target genes. Our data suggest that target redundancies are common among microRNA families. Together, these findings greatly enhance our understanding of the mechanisms and dynamics through which miRNAs regulate their target genes in neurons. Analysis of the miRNA targetome in hippocampal neurons after inhibition of 2 different miRNAs. AAV5 injections into the hippocampus of adult C57BL/6 mice producing either of the following under a synapsin promoter: GFP only (Samples beginning with 'GFP124…' or 'GFP125…'), GFP-miR124sp (Samples beginning with 'miR124…'), GFP-miR125sp (Samples beginning with 'miR125…'), GFP-AGO2-miR292sponge (samples ending with '…292'), GFP-AGO2-miR124sponge (samples ending with '…124'), GFP-AGO2-miR125sponge (samples ending with '…125'). All other samples were sham-injected.
Project description:To assess neuronal expression divergence between mice and rats, we used the Affymetrix array platform to assay the transcriptomes of micro-dissected individual soma and pool of dendrites of hippocampal neurons in dispersed primary cell cultures from rat and mouse. Using microdissected soma and dendrites from primary cultures of hippocampal neurons of two mouse strains (C57BL/6 and Balb/c) and one rat strain (Sprague-Dawley), we investigate via microarrays, subcellular localization of mRNAs in neurons
Project description:Hippocampal synaptic function and plasticity deteriorate with age, often resulting in learning and memory deficits. As MicroRNAs (miRNAs) are important regulators of neuronal protein expression, we examined whether miRNAs may contribute to this age-associated decline in hippocampal function. We first compared the small RNA transcriptome of hippocampal tissues from young and old mice. Among 269 hippocampal miRNAs, 80 were differentially expressed (≥ twofold) among the age groups. We focused on 36 miRNAs upregulated in the old mice compared with those in the young mice. The potential targets of these 36 miRNAs included 11 critical Eph/Ephrin synaptic signaling components. The expression levels of several genes in the Eph/Ephrin pathway, including EphB2, were significantly downregulated in the aged hippocampus. EphB2 is a known regulator of synaptic plasticity in hippocampal neurons, in part by regulating the surface expression of the NMDA receptor NR1 subunit. We found that EphB2 is a direct target of miR-204 among miRNAs that were upregulated with age. The transfection of primary hippocampal neurons with a miR-204 mimic suppressed both EphB2 mRNA and protein expression and reduced the surface expression of NR1. Transfection of miR-204 also decreased the total expression of NR1. miR-204 induces senescence-like phenotype in fully matured neurons as evidenced by an increase in p16-positive cells. We suggest that aging is accompanied by the upregulation of miR-204 in the hippocampus, which downregulates EphB2 and results in reduced surface and total NR1 expression. This mechanism may contribute to age-associated decline in hippocampal synaptic plasticity and the related cognitive functions.
Project description:To assess neuronal expression divergence between mice and rats, we used the Affymetrix array platform to assay the transcriptomes of micro-dissected individual soma and pool of dendrites of hippocampal neurons in dispersed primary cell cultures from rat and mouse.
Project description:Age-related cognitive decline is a serious health concern in our aging society. Decreased cognitive function observed during healthy brain aging is most likely caused by changes in brain connectivity and synaptic dysfunction in particular brain regions. Here we show that aged C57BL/6J wildtype mice have hippocampus-dependent spatial memory impairments. To identify the molecular mechanisms that are relevant to these memory deficits we investigated the temporal profile of mouse hippocampal synaptic proteome changes at 20, 40, 50, 60, 70, 80, 90 and 100 weeks of age. Extracellular matrix proteins were the only group of proteins that showed a robust and progressive upregulation over time. This was confirmed by immunoblotting and histochemical analysis, indicating that the increased levels of hippocampal extracellular matrix may limit synaptic plasticity as a potential cause of age-related cognitive decline. In addition, we observed that stochasticity in synaptic protein expression increased with age, in particular for proteins that were previously linked with various neurodegenerative diseases, whereas low variance in expression was observed for proteins that play a basal role in neuronal function and synaptic neurotransmission. Together, our findings show that both specific changes and increased variance in synaptic protein expression are associated with aging and may underlie reduced synaptic plasticity and impaired cognitive performance at old age.