Project description:The rules according to which transcription factors selectively bind only a small subset of genomic sites from a vast pool of similar sequences are not understood. One of the most challenging tasks in DNA recognition is posed by dosage compensation systems that require the unequivocal distinction between a sex chromosome and all autosomes. In Drosophila melanogaster the male-specific-lethal dosage compensation complex (MSL-DCC) doubles the transcription output of most genes on the X chromosome via chromatin modification, but the nature of this selectivity is not known. We now found that MSL2, the male-specific organizer of the DCC, uses two distinct DNA interaction surfaces to read out previously identified X chromosomal ‘high affinity sites’. Specificity is provided by the interaction of the CXC domain with a novel, X-specific motif defined by DNA sequence and shape features. By several criteria these ‘PionX sites’ are primary determinants of X chromosome identity.
Project description:The rules according to which transcription factors selectively bind only a small subset of genomic sites from a vast pool of similar sequences are not understood. One of the most challenging tasks in DNA recognition is posed by dosage compensation systems that require the unequivocal distinction between a sex chromosome and all autosomes. In Drosophila melanogaster the male-specific-lethal dosage compensation complex (MSL-DCC) doubles the transcription output of most genes on the X chromosome via chromatin modification, but the nature of this selectivity is not known. We now found that MSL2, the male-specific organizer of the DCC, uses two distinct DNA interaction surfaces to read out previously identified X chromosomal ‘high affinity sites’. Specificity is provided by the interaction of the CXC domain with a novel, X-specific motif defined by DNA sequence and shape features. By several criteria these ‘PionX sites’ are primary determinants of X chromosome identity.
Project description:The rules according to which transcription factors selectively bind only a small subset of genomic sites from a vast pool of similar sequences are not understood. One of the most challenging tasks in DNA recognition is posed by dosage compensation systems that require the unequivocal distinction between a sex chromosome and all autosomes. In Drosophila melanogaster the male-specific-lethal dosage compensation complex (MSL-DCC) doubles the transcription output of most genes on the X chromosome via chromatin modification, but the nature of this selectivity is not known. We now found that MSL2, the male-specific organizer of the DCC, uses two distinct DNA interaction surfaces to read out previously identified X chromosomal ‘high affinity sites’. Specificity is provided by the interaction of the CXC domain with a novel, X-specific motif defined by DNA sequence and shape features. By several criteria these ‘PionX sites’ are primary determinants of X chromosome identity.
Project description:The male-specific lethal dosage compensation complex (MSL-DCC) selectively assembles on the X chromosome in Drosophila males and activates gene transcription by twofold through histone acetylation. An MSL recognition element (MRE) sequence motif nucleates the initial MSL association, but how it is recognized remains unknown. Here, we identified the CXC domain of MSL2 specifically recognizing the MRE motif and determined its crystal structure bound to specific and nonspecific DNAs. The CXC domain primarily contacts one strand of DNA duplex and employs a single arginine to directly read out dinucleotide sequences from the minor groove. The arginine is flexible when bound to nonspecific sequences. The core region of the MRE motif harbors two binding sites on opposite strands that can cooperatively recruit a CXC dimer. Specific DNA-binding mutants of MSL2 are impaired in MRE binding and X chromosome localization in vivo. Our results reveal multiple dynamic DNA-binding modes of the CXC domain that target the MSL-DCC to X chromosomes.
Project description:Dosage compensation in Drosophila melanogaster involves the selective targeting of the male X chromosome by the dosage compensation complex (DCC) and the coordinate, approximately 2-fold activation of most genes. The principles that allow the DCC to distinguish the X chromosome from the autosomes are not understood. Targeting presumably involves DNA sequence elements whose combination or enrichment mark the X chromosome. DNA sequences that characterize 'chromosomal entry sites' or 'high-affinity sites' may serve such a function. However, to date no DNA binding domain that could interpret sequence information has been identified within the subunits of the DCC. Early genetic studies suggested that MSL1 and MSL2 serve to recognize high-affinity sites (HAS) in vivo, but a direct interaction of these DCC subunits with DNA has not been studied. We now show that recombinant MSL2, through its CXC domain, directly binds DNA with low nanomolar affinity. The DNA binding of MSL2 or of an MSL2-MSL1 complex does not discriminate between different sequences in vitro, but in a reporter gene assay in vivo, suggesting the existence of an unknown selectivity cofactor. Reporter gene assays and localization of GFP-fusion proteins confirm the important contribution of the CXC domain for DCC targeting in vivo.
Project description:Transcriptional regulators select their targets from a large pool of similar genomic sites. The binding of the Drosophila dosage compensation complex (DCC) exclusively to the male X chromosome provides insight into binding site selectivity rules. Previous studies showed that the male-specific organizer of the complex, MSL2, and ubiquitous DNA-binding protein CLAMP directly interact and play an important role in the specificity of X chromosome binding. Here, we studied the highly specific interaction between the intrinsically disordered region of MSL2 and the N-terminal zinc-finger C2H2-type (C2H2) domain of CLAMP. We obtained the NMR structure of the CLAMP N-terminal C2H2 zinc finger, which has a classic C2H2 zinc-finger fold with a rather unusual distribution of residues typically used in DNA recognition. Substitutions of residues in this C2H2 domain had the same effect on the viability of males and females, suggesting that it plays a general role in CLAMP activity. The N-terminal C2H2 domain of CLAMP is highly conserved in insects. However, the MSL2 region involved in the interaction is conserved only within the Drosophila genus, suggesting that this interaction emerged during the evolution of a mechanism for the specific recruitment of the DCC on the male X chromosome in Drosophilidae.