Circadian Homeostasis of Liver Metabolism Suppresses Hepatocarcinogenesis
Ontology highlight
ABSTRACT: Chronic jet lag induces spontaneous hepatocellular carcinoma (HCC) in wild-type mice following a pathophysiological pathway very similar to that observed in obese humans. This process initiates with non-alcoholic fatty liver disease (NAFLD), progresses to steatohepatitis and fibrosis before HCC detection, and is driven by persistent genome-wide gene deregulation that induces global liver metabolic dysfunction. Nuclear receptor-controlled cholesterol/bile acid and xenobiotic metabolism are found among top deregulated pathways. Ablation of the bile acid receptor FXR dramatically increases intrahepatic bile acid levels and jet-lag-induced HCC, while loss of CAR, a well-known liver tumor promoter, inhibits NAFLD-induced hepatocarcinogenesis. Circadian disruption activates CAR by promoting cholestasis, peripheral clock disruption, and sympathetic dysfunction. Thus, FXR and CAR are clock-controlled therapeutic targets for spontaneous HCC
ORGANISM(S): Mus musculus
PROVIDER: GSE75475 | GEO | 2016/11/23
SECONDARY ACCESSION(S): PRJNA304388
REPOSITORIES: GEO
ACCESS DATA