Transcriptomics

Dataset Information

0

Identification and Characterization of Cryptic Extremophile Traits by Experimental Evolution


ABSTRACT: Extremely thermoacidophilic Crenarchaeota belonging to the family Sulfolobales flourish in hot acidic habitats that are strongly oxidizing. However, the pH extremes of these habitats often exceed the acid tolerance of type species and strains. Here, experimental evolution was used to test whether such organisms harbor additional thermoacidophilic capacity. Three distinct cell lines derived from a single type species were subjected to high temperature serial passage while culture acidity was gradually increased. A 178-fold increase in thermoacidophily was achieved after 29 increments of shifted culture pH resulting in growth at pH 0.8 and 80°C. These strains are named super acid resistant crenarchaeota (SARC). Mathematical modeling using growth parameters predicted the limits of acid resistance while genome and transcriptome resequencing provided insights into the underlying mechanisms responsible for evolved thermoacidophily. Transcriptomics of the evolved strains indicates that their unique phenotype may be due to an increased rate of membrane turnover under strong acid conditions.

ORGANISM(S): Saccharolobus solfataricus

PROVIDER: GSE76423 | GEO | 2015/12/31

SECONDARY ACCESSION(S): PRJNA307257

REPOSITORIES: GEO

Dataset's files

Source:
Action DRS
Other
Items per page:
1 - 1 of 1

Similar Datasets

2015-12-31 | E-GEOD-76423 | biostudies-arrayexpress
2016-05-14 | GSE81414 | GEO
2016-05-14 | E-GEOD-81414 | biostudies-arrayexpress
| PRJNA546062 | ENA
2023-10-31 | E-MTAB-12337 | biostudies-arrayexpress
2009-06-15 | GSE10603 | GEO
2010-12-31 | E-TABM-931 | biostudies-arrayexpress
2018-03-15 | E-MTAB-4014 | biostudies-arrayexpress
2018-11-14 | GSE115448 | GEO
2011-01-10 | GSE24267 | GEO