Bilin-dependent photoacclimation in Chlamydomonas reinhardtii
Ontology highlight
ABSTRACT: Linear tetrapyrrole (bilin)-based phytochrome sensors optimize photosynthetic light capture by mediating massive gene reprogramming in land plants, yet surprisingly, many sequenced chlorophyte (green) algae lack phytochrome genes. Previous studies on the heme oxygenase (hmox1) mutant of Chlamydomonas reinhardtii suggest that bilin biosynthesis in plastids is needed for regulation of a limited nuclear gene network implicated in oxygen detoxification during dark to light transitions. The hmox1 mutant is unable to grow photoautotrophically and poorly acclimates to increased illumination even in the presence of acetate. Here we show that these phenotypes reflect the reduced accumulation of PSI reaction centers as well as a loss of PSI and PSII antennae complexes during photoacclimation. Phenotypically, the hmox1 mutant is similar to the chlorophyll biosynthesis mutants, gun4, crd1 and cth1. However, many of the hmox1 phenotypes can be rescued by the application of exogenous biliverdin IXα, the bilin product of HMOX1; this rescue is independent of photosynthesis but strongly dependent upon blue light. RNA-Seq comparisons of hmox1, 4A+ wild type and two genetically complemented lines also reveal that bilins restore regulation of a small network of photosynthesis-associated nuclear genes. These include genes responsible for chlorophyll biosynthesis (CHLI1/2), PSI light-harvesting (LHCA4) and naphthoquinone metabolism (MEN2), all of which show reduced photoinduction in the hmox1 mutant. We propose that a bilin-based, blue light sensory system is responsible for the maintenance of a functional photosynthetic apparatus in light-grown C. reinhardtii. This critical and possibly ancestral role for bilins may be responsible for retention of bilin biosynthesis in all eukaryotic photosynthetic species.
ORGANISM(S): Chlamydomonas reinhardtii
PROVIDER: GSE77388 | GEO | 2019/01/24
REPOSITORIES: GEO
ACCESS DATA