Lead (Pb+2) effects in global gene expression in the larval brain of Drosophila melanogaster
Ontology highlight
ABSTRACT: Lead (Pb2+) is an environmental contaminant that is widely distributed around the world, mainly due to anthropogenic sources. Developmental exposure to Pb2+ has been linked to neurodevelopmental impairments in different animal species. Studies have shown that developmental exposure to Pb2+ could interfere with normal gene expression patterns in the immature brain leading to neurodevelopmental neuropathologies. However, the precise molecular mechanisms underlying the neurotoxicity of developmental Pb2+ exposure are still to be elucidated. We used the fruit fly to gain insights into the molecular mechanisms affected by exposure to this neurotoxicant. The fruit fly, has been used recently to understand the behavioral, synaptic and molecular changes after developmental exposure to Pb+2. Our overarching hypothesis is that developmental exposure of the fruit fly to Pb+2 results in global gene expression dysregulation in the larval brain resulting in central nervous system developmental impairments. We collected RNA samples from larval brain of control and Pb2+-exposed flies and performed cRNA hybridization on a 4x44K Agilent microarray. Overall, Pb+2 results in transcriptional disturbances of important developmental signaling pathways in the larval brain.
ORGANISM(S): Drosophila melanogaster
PROVIDER: GSE77417 | GEO | 2016/12/31
SECONDARY ACCESSION(S): PRJNA310244
REPOSITORIES: GEO
ACCESS DATA