ABSTRACT: This microarray experiment provides data which shows of the effects on gene expression from the artificial application of certain hormones on their own or in combination on ripening berries from the Adelaide Hills Various hormones have been implicated as having an effect on the grape berry ripening process. Their application prior to ripening may change the gene expression profile at veraison. The identification of the genes which are expressed at different levels due to the various hormone treatments may give insight to key gene expression changes in the ripening process. Keywords: Hormone treatment-Development
Project description:To understand the fruit changes and mechanisms involved in the compatible grapevine-virus interaction, we analyzed the berry transcriptome in two stages of development (veraison and ripening) in the red wine cultivar Cabernet Sauvignon infected with Grapevine leaf-roll-associated virus-3 (GLRaV-3). Analysis of global gene expression patterns indicate incomplete berry maturation in infected berries as compared to uninfected fruit suggesting viral infection interrupts the normal berry maturation process. PLEXdb(http://www.plexdb.org) has submitted this series at GEO on behalf of the original contributor, Andrea Vega. The equivalent experiment is VV28 at PLEXdb. GLRaV-3 virus-infected, developmental stage: Veraison(3-replications); GLRaV-3 virus-infected, developmental stage: Ripening(3-replications); Virus-free, developmental stage: Veraison(4-replications); Virus-free, developmental stage: Ripening(4-replications)
Project description:Protein hydrolysate (PH)-based biostimulants offer a cost-effective and sustainable approach for regulating physiological processes in plants to stimulate growth and improve quality characteristics and stress tolerance. The effectiveness of treatments using different categories of biostimulants on grapevine growth and development has been well-documented for foliar applications compared to soil applications. Considering table grapes, colour is an important quality trait that can be modulated by vineyard practice, including fertilization. In this context, we have evaluated the effects of an environmentally friendly biostimulant, a protein hydrolysate derived from corn gluten, on the berry developmental process of the Black magic table grape. When applied to the soil at veraison, the biostimulant increased the cluster weight, berry diameter, and colour just 14 days after application. The transcriptome analysis of berries carried out at the same sampling time point underlined that the treatment speeds up the ripening process.
Project description:Grape berries undergo considerable physical and biochemical changes during the ripening process. Ripening is characterized by a number of changes, including the degradation of chlorophyll, an increase in berry deformability, a rapid increase in the level of hexoses in the berry vacuole, an increase in berry volume, the catabolism of organic acids, the development of skin colour, and the formation of compounds that influence flavour, aroma, and therefore, wine quality. The aim of this work is to identify differentially expressed genes during grape ripening by microarray and real-time PCR techniques. Using a custom array of new generation, we analysed the expression of 6000 grape genes from pre-veraison to full maturity, in Vitis vinifera cultivar Muscat of Hamburg, in two different years (2006 and 2007). Five time points per year and two biological replicates per stadium were considered. To reduced intra-plant and inter-plant biological variability, for each ripening stadium we collected around hundred berries from several bunch grapes of five plants of V. vinifera cv Muscat of Hamburg. We will use the real-time PCR technique to validate microarray data.Muscat of Hamburg. We will use the real-time PCR technique to validate microarray data.
Project description:To understand the fruit changes and mechanisms involved in the compatible grapevine-virus interaction, we analyzed the berry transcriptome in two stages of development (veraison and ripening) in the red wine cultivar Cabernet Sauvignon infected with Grapevine leaf-roll-associated virus-3 (GLRaV-3). Analysis of global gene expression patterns indicate incomplete berry maturation in infected berries as compared to uninfected fruit suggesting viral infection interrupts the normal berry maturation process. PLEXdb(http://www.plexdb.org) has submitted this series at GEO on behalf of the original contributor, Andrea Vega. The equivalent experiment is VV28 at PLEXdb.
Project description:Grapevine is a commercially important fruit crop that provides berries for direct consumption, juice pressing, drying (raisins), and fermentation to produce wine. The economic value of the crop has encouraged many researchers to study the physiological and molecular basis of berry development, particularly processes that affect wine quality. Post-harvest withering of grapevine berries is used in the production of dessert and fortified wines to alter must quality characteristics and to increase the concentration of simple sugars. Vitis vinifera cv Corvina berries were sampled during the 2006 growing season at four developmental time points and three additional time points during the 91-day post-harvest withering process. The four developmental time points were 59, 71, 98 and 112 days after fruit set, corresponding to pre-veraison, veraison, early ripening and late ripening, and the three withering time points (WI, WII and WIII) were 35, 56 and 91 days after harvest. Three biological replicates were taken at each time point resulting in a total of 21 samples.
Project description:The application of sensors in viticulture is a fast and efficient method to monitor grapevine vegetative, yield, and quality parameters and determine spatial intra-vineyard variability. Molecular analysis at the gene expression level can further contribute to the understanding of the observed variability by elucidating how pathways contributing to different grape quality traits behave in zones diverging on any of these parameters. The intra-vineyard variability of a Cabernet Sauvignon vineyard was evaluated through a Normalized Difference Vegetation Index (NDVI) map calculated from a multispectral image and detailed ground-truthing (e.g., vegetative, yield, and berry ripening compositional parameters). The relationships between NDVI and ground measurements were explored by correlation analysis. Moreover, berries were investigated by microarray gene expression analysis performed at five time points from fruit set to full ripening. Comparison between the transcriptomes of samples taken from locations with the highest and lowest NDVI values identified 968 differentially expressed genes. Spatial variability maps of the expression level of key berry ripening genes showed consistent patterns aligned with the vineyard vigor map. These insights indicate that berries from different vigor zones present distinct molecular maturation programs and suggest that transcriptome analysis may be a valuable tool for the management of vineyard variability.
Project description:Grapevine is a perennial crop often cultivated by grafting a scion cultivar on a suitable rootstock. Rootstocks influence scions, particularly with regard to water uptake and vigor. Therefore, one of the possibilities to adapt viticulture to the extended drought stress periods is to select rootstocks conferring increased tolerance to drought. However, the molecular mechanisms associated with the ability of rootstock/scion combination to influence grape berry metabolism under drought stress are still poorly understood. The transcriptomic changes induced by drought stress in grape berries (cv. Pinot noir) from vines grafted on either 110R (drought tolerant) or 125AA (drought sensitive) rootstock were compared. The experiments were conducted in the vineyard for two years and two grape berry developmental stages (50% and 100 % veraison. The genome-wide microarray approach showed that water stress strongly impacts gene expression in the berries, through ontology categories that cover cell wall metabolism, primary and secondary metabolism, signalling, stress, and hormones, and that some of these effects strongly depend on the rootstock genotype. Indeed, under drought stress, berries from vines grafted on 110R displayed a different transcriptional response compared to 125AA concerning genes related to jasmonate, phenylpropanoid metabolism and PR-proteins. The data also suggests a link between jasmonate and secondary metabolism in water-stressed berries. Overall, genes related to secondary metabolism and jasmonate are more induced and/or less repressed by drought stress in the berries grafted on the drought-sensitive rootstock 125AA. These rootstock-dependent gene expression changes are relevant for berry composition and sensory properties.
Project description:UV radiation (UV) alters secondary metabolism in the skin of Vitis vinifera L. berries, which may affect on the final composition of both, grapes and wines. We compared berry skin transcriptome and phenolic composition between Tempranillo berries grown in the presence or absence of solar UV in a mid-altitude Tempranillo vineyard. By analysing two different ripening degrees, expression of 121 genes was significantly altered. Functional enrichment identified that, principally, secondary metabolism-related transcripts were induced by UV, including VvFLS1, VvGT5 and VvGT6 flavonol biosynthetic genes induction. Concurrently, flavonol accumulation was the most evident impact of UV on the berry skin phenolic composition. Monoterpenoid biosynthetic transcripts were also up-regulated by UV, whereas induction of stilbenoid biosynthetic transcripts and stilbenes accumulation was probably induced by the joint action of UV and other condition under the UV-blocking filter, likely higher temperature. Among regulatory genes, VvMYBF1, VvMYB24 and three bHLH transcription factors were up-regulated by UV. Homologs to Arabidopsis UVR8-dependent UV-B-induced genes were also induced, including VvHY5-1, VvHY5-2 and VvRUP UV-B signalling genes. This suggests that the UV-B-specific signalling pathway is activated in the skin of grapes grown at low-medium altitudes. The biosynthesis and accumulation of UV-absorbing compounds that are appreciated for winemaking were almost specifically triggered, which indicates that viticultural practices increasing solar UV incidence may improve grape features important to wine production. A total of 12 samples were hybridized. Grape skin RNA from berries ripening under a UV-transmitting filter (FUV+) and a UV-blocking filter (FUV-) was compared. Berry skin of two different ripening stages was analysed on each UV treatment. All samples were harvested simultaneously and a NaCl series was used to select the ripening degree in a non-invasive way. Three biological replicates were analyzed for each sample.
Project description:Grapevine is a popular fruit crop worldwide with essential economic importance. The grape berry undergoes complex biochemical changes from fruit set until ripening. To better understand this dynamic process, we applied mass spectrometry based platforms to analysis the metabolome and proteome of grape berries at 12 developmental stages covering the whole developmental process of grape berries. Primary metabolites involved in central carbon metabolism such as sugars, organic acids and amino acids metabolism together with various bioactive secondary metabolites like flavonols, flavan-3-ols and anthocyanins were annotated and quantified. At the same time, the proteomic analysis revealed the protein dynamics of the developing grape berries. Multivariate statistical analysis of the metabolomic and proteomic data revealed growing trajectories with minor difference indicating that grape berry development is a sequential process resulting in changes in all examined processes. The incorporation of the metabolomic and proteomic results allowed us to schematize representative metabolome and proteome candidates on sugar, glycolysis, TCA cycle, amino acid, phenylpropanoid, flavonoid biosynthetic pathways. The overview of the metabolism dynamics on both protein and metabolite level unveiled the metabolism switch and adjustments during grape berry development.
Project description:A bunch of grapes at veraison is comprised of berries at different stages of development ranging from hard green to soft red. Veraison represents an important transition stage in the ripening process where key genes may be switched on or off. Single berries at various stages of development from hard green to soft red were collected at a single time point from a single bunch of grapes going through veraison. Gene expression patterns were obtained from single berries representing different developmental stages. Keywords: Developmental series