Project description:Identification of novel LXR target genes Primary mouse hepatocytes were isolated from Bl6 mice and plated on 6 well plates. Cells serum starved and treated with statin/MVA followed by overnight adminstration of DMSO or LXR agonist GW3965. Total RNA isolation using TRIZOL and Qiagen Column.
Project description:Gene expression: Identification of primary target genes of liver X receptor (LXR) in an immune-related cellular model (THP-1 cells) to study, in conjunction with LXR binding data from ChIP-seq, the genome-wide mechanisms of transcriptional regulation by LXR. ChIP-Seq: We performed ChIP-seq in macrophage-type PMA-differentiated THP-1 cells after stimulation with the potent synthetic LXR ligand T0901317 (T09). As a reference we performed microarray gene expression analysis in the same cellular model. We identified in total 1357 LXR binding locations on chromatin (FDR < 1%), of which 526 were observed after T09 treatment. De novo analysis of LXR site sequences identified DR4-type binding sites as major motif.
Project description:To identify novel LXR target genes, we conducted transcriptional profiling studies using RAW264.7 cells ectopically expressing LXRalpha Total RNA was isolated from RAW264.7 macrophages ectopically expressing LXRalpha as described in Venkateswaran et al. (2000); PNAS 97, 12097-12102. Cells were cultured with DMSO or GW3965 (1 μM) and LG268 (100 nM). Transcriptional profiling was performed at the UCLA microarray core facility using murine Affymetrix 430 2.0 microarrays.
Project description:Gene expression: Identification of primary target genes of liver X receptor (LXR) in an immune-related cellular model (THP-1 cells) to study, in conjunction with LXR binding data from ChIP-seq, the genome-wide mechanisms of transcriptional regulation by LXR. ChIP-Seq: We performed ChIP-seq in macrophage-type PMA-differentiated THP-1 cells after stimulation with the potent synthetic LXR ligand T0901317 (T09). As a reference we performed microarray gene expression analysis in the same cellular model. We identified in total 1357 LXR binding locations on chromatin (FDR < 1%), of which 526 were observed after T09 treatment. De novo analysis of LXR site sequences identified DR4-type binding sites as major motif. gene expression: THP-1 cells were treated for 4 h with 1 M-BM-5M T09 or vehicle (DMSO) ChIP-Seq: PMA-differentiated THP-1 cells were treated for 60 min with 1 M-BM-5M T09 or vehicle (DMSO)
Project description:The Liver X Receptors (LXRs) play important roles in multiple metabolic pathways, including fatty acid, cholesterol, carbohydrate and energy metabolism. To expand the knowledge of the functions of LXR signaling during embryonic development, we performed a whole-genome microarray analysis of Lxr target genes in zebrafish larvae treated with either one of the synthetic LXR ligands T0901317 or GW3965. Assessment of the biological processes enriched by differentially expressed genes revealed a prime role for Lxr in regulating lipid metabolic processes, similarly to the function of LXR in mammals. In addition, exposure to the Lxr ligands induced changes in expression of genes in the neural retina and lens of the zebrafish eye, including the photoreceptor guanylate cyclase activators and lens gamma crystallins, suggesting a potential novel role for Lxr in modulating the transcription of genes associated with visual function in zebrafish. The regulation of expression of metabolic genes was phenotypically reflected in an increased absorption of yolk in the zebrafish larvae, and changes in the expression of genes involved in visual perception were associated with morphological alterations in the retina and lens of the developing zebrafish eye. The regulation of expression of both lipid metabolic and eye specific genes was sustained in 1 month old fish. The transcriptional networks demonstrated several conserved effects of LXR activation between zebrafish and mammals, and also identified potential novel functions of Lxr, supporting zebrafish as a promising model for investigating the role of Lxr during development.