Project description:Obligate intracellular parasites must efficiently invade host cells in order to mature and be transmitted. For the malaria parasite Plasmodium falciparum, invasion of host red blood cells (RBCs) is essential. Here we describe a parasite-specific transcription factor belonging to the Apicomplexan Apetala 2 (ApiAP2) family that is responsible for regulating the expression of a subset of merozoite genes involved in RBC invasion (PfAP2-I). Our genome-wide analysis by ChIP-seq shows that PfAP2-I interacts with a specific DNA motif in the promoters of these genes. msp5 transcription levels decrease when the PfAP2-I DNA-binding motif is mutated in PfAP2-I-GFP parasites, showing that PfAP2-I must bind the DNA motif in order for msp5 to be transcribed.
Project description:Obligate intracellular parasites must efficiently invade host cells in order to mature and be transmitted. For the malaria parasite Plasmodium falciparum, invasion of host red blood cells (RBCs) is essential. Here we describe a parasite-specific transcription factor belonging to the Apicomplexan Apetala 2 (ApiAP2) family that is responsible for regulating the expression of a subset of merozoite genes involved in RBC invasion (PfAP2-I). Our genome-wide analysis by ChIP-seq shows that PfAP2-I interacts with a specific DNA motif in the promoters of these genes. msp5 transcription levels decrease when the PfAP2-I DNA-binding motif is mutated in PfAP2-I-GFP parasites, showing that PfAP2-I must bind the DNA motif in order for msp5 to be transcribed.