A genome-wide approach to identify genetic variants that contribute to etoposide-induced cytotoxicity
Ontology highlight
ABSTRACT: Large inter-individual variance has been observed in sensitivity to drugs. To comprehensively decipher the genetic contribution to these variations in drug susceptibility, we present a genome-wide model utilizing human lymphoblastoid cell lines from the International HapMap consortium, of which extensive genotypic information is available, to identify genetic variants that contribute to chemotherapeutic agent-induced cytotoxicity. Our model integrated genotype, gene expression and sensitivity of HapMap cell lines to drugs. Cell lines derived from 30 trios of European descent (CEU) and 30 trios of African descent (YRI) were utilized. Cell growth inhibition at increasing concentrations of etoposide for 72 h was determined using alamarBlue® assay. Gene expression on 176 HapMap cell lines (87 CEU and 89 YRI) was determined using the Affymetrix GeneChip® Human Exon 1.0ST Array. We evaluated associations between genotype and cytotoxicity, genotype and gene expression and correlated gene expression of the identified candidates with cytotoxicity. The analysis identified 63 genetic variants that contribute to etoposide-induced toxicity through their effect on gene expression. These include genes that may play a role in cancer (AGPAT2, IL1B and WNT5B) and genes not yet known to be associated with sensitivity to etoposide. This unbiased method can be used to elucidate genetic variants contributing to a wide range of cellular phenotypes induced by chemotherapeutic agents. Keywords: exon array
ORGANISM(S): Homo sapiens
PROVIDER: GSE7792 | GEO | 2007/05/31
SECONDARY ACCESSION(S): PRJNA99819
REPOSITORIES: GEO
ACCESS DATA