Project description:MicroRNAs regulate various cellular processes. While several genes associated with replicative senescence have been described in endothelial cells, miRNAs that regulate these genes remain largely unknown. The present study was designed to identify miRNAs associated with replicative senescence and their target genes in HUVECs. We have employed Agilent Human MicroRNAs microarray platform to evaluate the expressions of 866 human miRNAs and 89 human viral miRNAs, based on Sanger miRNA database release 12.0 miRNA expression profiles were established for young and replicative senescent HUVECs
Project description:MicroRNAs regulate various cellular processes. While several genes associated with replicative senescence have been described in endothelial cells, miRNAs that regulate these genes remain largely unknown. The present study was designed to identify miRNAs associated with replicative senescence and their target genes in HUVECs. Gene profiling was established using the same RNA input as that used for miRNA profiing. We have employed Agilent Whole Human Genome microarray platform to evaluate the expressions of 19,596 human genes . Gene expression profiles were established for young and replicative senescent HUVECs
Project description:Endothelial cells are critical for angiogenesis, and microRNAs plays important roles in this process. We investigated the regulatory role of microRNAs in endothelial cells of hepatocellular carcinoma (HCC) by examining the microRNA expression profile of human umbilical vein endothelial cells (HUVECs) in the absence or presence of human HCC cells, and identified miR-146a as the most highly up-regulated microRNA. Furthermore, we revealed that miR-146a promoted the expression of platelet-derived growth factor receptor (PDGFRA) in HUVECs, and this process was mediated by BRCA1. Overexpression of PDGFRA in the ECs of HCC tissues was associated with microvascular invasion, and predicted a poorer prognosis. These results suggest that MiR-146a plays a key role in regulating the angiogenic activity of ECs in HCC through miR-146a-BRCA1-PDGFRA pathway. MiR-146a may emerge as a potential anti-angiogenic target on ECs for HCC therapy. We have employed whole genome OneArray to examine the genome expression changes of HUVECs overexpressing miR-146a.
Project description:MicroRNAs regulate various cellular processes. While several genes associated with replicative senescence have been described in endothelial cells, miRNAs that regulate these genes remain largely unknown. The present study was designed to identify miRNAs associated with replicative senescence and their target genes in HUVECs. We have employed Agilent Human MicroRNAs microarray platform to evaluate the expressions of 866 human miRNAs and 89 human viral miRNAs, based on Sanger miRNA database release 12.0
Project description:Endothelial cells are critical for angiogenesis, and microRNAs plays important roles in this process. We investigated the regulatory role of microRNAs in endothelial cells of hepatocellular carcinoma (HCC) by examining the microRNA expression profile of human umbilical vein endothelial cells (HUVECs) in the absence or presence of human HCC cells, and identified miR-146a as the most highly up-regulated microRNA. Furthermore, we revealed that miR-146a promoted the expression of platelet-derived growth factor receptor (PDGFRA) in HUVECs, and this process was mediated by BRCA1. Overexpression of PDGFRA in the ECs of HCC tissues was associated with microvascular invasion, and predicted a poorer prognosis. These results suggest that MiR-146a plays a key role in regulating the angiogenic activity of ECs in HCC through miR-146a-BRCA1-PDGFRA pathway. MiR-146a may emerge as a potential anti-angiogenic target on ECs for HCC therapy.
Project description:MicroRNAs regulate various cellular processes. While several genes associated with replicative senescence have been described in endothelial cells, miRNAs that regulate these genes remain largely unknown. The present study was designed to identify miRNAs associated with replicative senescence and their target genes in HUVECs. Gene profiling was established using the same RNA input as that used for miRNA profiing. We have employed Agilent Whole Human Genome microarray platform to evaluate the expressions of 19,596 human genes .