Transcriptomics

Dataset Information

0

Deciphering a secondary genetic code in neurons: the role of codon bias in regulating neuronal protein levels and implications for Elongator-mediated neurological disease


ABSTRACT: Familial dysautonomia (FD) results from mutation in IKBKAP/ELP1, a gene encoding the scaffolding protein for the Elongator complex. This highly conserved complex is required for the translation of codon-biased genes in lower organisms. Here we investigate whether Elongator serves a similar function in mammalian peripheral neurons, the population devastated in FD. Using codon-biased eGFP sensors, and multiplexing of codon usage with transcriptome and proteome analyses of over 6,000 genes, we identify two categories of genes, as well as specific gene identities that depend on Elongator for normal expression. Moreover, we show that multiple genes in the DNA damage repair pathway are codon-biased, and that with Elongator loss, their misregulation is correlated with elevated levels of DNA damage. These findings link Elongator's function in the translation of codon-biased genes with both the developmental and neurodegenerative phenotypes of FD, and also clarify the increased risk of cancer associated with the disease.

ORGANISM(S): Mus musculus

PROVIDER: GSE80130 | GEO | 2018/04/25

REPOSITORIES: GEO

Dataset's files

Source:
Action DRS
Other
Items per page:
1 - 1 of 1

Similar Datasets

2021-10-25 | GSE186465 | GEO
| MSV000081568 | MassIVE
2019-03-21 | GSE126155 | GEO
2020-04-30 | GSE80107 | GEO
2020-04-23 | PXD016832 | Pride
2023-09-28 | GSE230867 | GEO
2012-01-01 | E-GEOD-27915 | biostudies-arrayexpress
2018-01-23 | GSE42053 | GEO
2022-02-16 | PXD021186 | Pride
2012-01-01 | GSE27915 | GEO